• 제목/요약/키워드: 방전 가공

검색결과 422건 처리시간 0.046초

미세구멍 가공용 방전 가공기의 개발 및 시험 (The development and test of the electro-discharge machine for micro-drilling)

  • 백형창;김병희;장인배
    • 산업기술연구
    • /
    • 제19권
    • /
    • pp.1-7
    • /
    • 1999
  • This is the pre-study to pile up the basic technique for the electro-discharge machining in the field of micro-drilling. The machined chips are flowed out from the machining area by the flow arisen from the high speed rotation of the electrode. The cylindrical shape electrode, whose diameter is 0.5mm, is clamped by the three point clamping type clamper and the clamper is attached at the front shaft of the high speed rotating DC motor. The current for machining is controlled by pulse width modulation technique and the machining conditions such as frequency and duty ratio are changed to find out the effect of the variables for machined results.

  • PDF

가공액 환경에 따른 WEDG가공특성의 실험적 연구 (Experimental Study on the WEDG Machining Characteristics of Dielectric Conditions)

  • 정태현;배순흥;박규열
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.894-897
    • /
    • 2000
  • 본 연구에서는 초미세 형상부품의 제작기술로서 방전가공기술의 활용을 전제로 하여, WEDG(Wire electric discharge grinding: WEDG)가공에 있어서 가공액의 공급방식을 포함한 공급환경이 표면상태에 미치는 영향에 관하여 조사하였다. WEDG법을 이용한 형상가공에 있어서는 단위 방전 펄스당의 에너지를 극소화하여 제거단위를 미세화함으로서 가공정밀도(가공표면 및 가공형상의 정밀도)를 향상시키는 것이 가능하다.(중략)

  • PDF

미세구멍의 방전가공에 관한 연구 (A Study on Micro-Hole Drilling by EDM)

  • 윤재웅;양민양
    • 대한기계학회논문집
    • /
    • 제14권5호
    • /
    • pp.1147-1154
    • /
    • 1990
  • 본 연구에서는 초음파 화학 가공(ultrasonicassisted chemical mahining)을 이용하여 100$\mu\textrm{m}$이하의 전극봉을 제작하였고 제작한 전극을 이용하여 미세구멍을 방전 가공함으로써 가공특성을 파악하고, 방전액을 각각 등유(kerosene)와 물로하여 구멍의 표면을 비교, 분석하였으며 전극의 지름, 가공물의 두께에 대한 오버컷과 경사도(tap- er) 그리고 전극의 마멸을 조사하였다.

W-EDM이 가공면에 미치는 영향 (Effects of The Working Surface an W-EDM)

  • 김세환
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2004년도 추계학술대회
    • /
    • pp.56-58
    • /
    • 2004
  • 프레스금형의 부품 중에서 펀치와 다이플레이트를 제작하는 방법은 공작기계만을 사용하여 제작하는 경우와 공작기계와 와이어 컷 방전가공기를(W-EDM)를 병행 사용하는 경우가 있다. 그런데 공작기계만을 사용하여 제작 할 때는 금형수명(Die Life)이 200만-230만 스트로크였는데 와이어 컷 방전가공기를 사용한 제작에서는 70만-80만 스트로크에서 금형수명을 다하고 있다. 이것은 W-EDM후에 발생되는 가공변질층으로 예측되므로 W-EDM전과 W-EDM후의 가공면에 대한 SEM촬영을 실시하여 가공변질충의 발생여부를 확인하고 이에 대한 제거방법을 연구하고자 하였다.

  • PDF

방전 미세구멍가공 특성의 고찰 (A Study on the Micro Hole Machining Characteristics in WEDG method)

  • 정태현;박규율
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.953-956
    • /
    • 1997
  • Micro drilling characteristics by EDM method was investigated. In detail, Micro tool electrode for EDM drilling was machined by use of WEDG method and micro hole was drilled using the machined tool electrode in SUS plate. The machining accuracy and time was compared in a different dielectric fluid. As a result, it was convinced that this method could be utilized as a fabrication technology of micro mold or micro 3 dimensional parts.

  • PDF

진동기구를 이용한 미세구멍 방전가공의 효율향상 (Improvement of Micro-hole EDM Efficiency using Vibration Flushing)

  • 손성민
    • 한국산학기술학회논문지
    • /
    • 제12권2호
    • /
    • pp.623-628
    • /
    • 2011
  • 마이크로 방전가공은 활용도가 높은 미세가공기술이지만 가공깊이가 증가하면 방전가공 시에 발생하는 가공부산물인 데브리(debris)로 인해 공구 전극과 공작물이 단락되어 방전의 진행이 힘들고 극심한 전극마모가 발생한다. 이를 극복하기 위하여 공구 전극이나 공작물에 진동을 부가하는 진동 플러싱 기술이 개발되었으나 기존의 진동 플러싱 연구는 피에조 액츄에이터를 적용하여 높은 진동수를 발생시키는 것에만 집중하였다. 본 연구에서는 경제적이면서도 유사한 효과를 얻을 수 있는 솔레노이드를 이용한 진동 플러싱을 제안한다. 솔레노이드를 이용한 진동 플러싱은 피에조 액츄에이터를 이용하는 것에 비해 큰 진폭을 얻을 수 있으며 진동수에 대해 독립적으로 설정하는 것이 용이하다. 가공 실험을 통해 솔레노이드를 이용하여 낮은 진동 주파수에서 큰 진폭으로 진동 플러싱하는 방법이 고주파진동 플러싱과 비교하여 경제적이며 충분한 적용효과를 발휘할 수 있음을 확인하였다.

건성 와이어방전가공 프로세스 특성에 관한 실험적 연구 (Experimental Study on Characteristics of Dry Wire Electrical Discharge Machining (EDM) Process)

  • 이상원;김홍석
    • 한국정밀공학회지
    • /
    • 제27권1호
    • /
    • pp.11-17
    • /
    • 2010
  • This study investigates the non-traditional manufacturing process of dry wire electrical discharge machining (EDM) in which liquid dielectric is replaced by a gaseous medium. Wire EDM experiments of thin workpieces were conducted both in wet and dry EDM conditions to examine the effects of spark cycle (T), spark on-time ($T_{on}$), thickness of work pieces, and work material on machining performance. The material removal rate (MRR) in the dry wire EDM case was much lower than that in the wet wire EDM case. In addition, the thickness of workpiece and work-material were found to be critical factors influencing the MRR for dry EDM process. The relative ratios of spark, arc and short circuit were also calculated and compared to examine the effectiveness of processes of dry and wet wire EDM.

초경합금의 와이어방전가공 가공성 및 표면특성 (Machinability and Surface Characteristics of Sintered Carbides in W-EDM)

  • 김창호
    • 한국정밀공학회지
    • /
    • 제16권8호
    • /
    • pp.100-105
    • /
    • 1999
  • This work analyses the effects of electrical conductivities of dielectric and cobalt amount on output parameters such as metal removal rate and the surface roughness value of cemented carbides cut by wire electrical discharge machining(W-EDM). Especially, the cracking behaviour of W-EDM machined surface and optimal machining condition of three kinds of cemented carbides, which have different chemical composition of tungsten carbide and cobalt are also tested. Experimental result shows that increases in cobalt content and electrical conductivity of the dielectric affect the metal removal rate and substantially worsen the final surface quality as a greater quantity of solidified metal deposits on the eroded surface.

  • PDF

미세 방전 가공에서 방전 면적과 축전 용량에 따른 가공율 특성 (Characteristics of Material Removal Rate According to Discharge Area and Capacitance in MEDM)

  • 박동희;류시형;김보현;주종남
    • 한국정밀공학회지
    • /
    • 제20권12호
    • /
    • pp.183-190
    • /
    • 2003
  • In this paper, investigated are the machining characteristics such as material removal rate and machining time with respect to discharge area and capacitance in micro electrical discharge machining (MEDM). As discharge area determined by the electrode size and capacitance change, the optimal feedrate to allow the minimum machining time changes. The smaller discharge area is, the lower MRR becomes because of the area effect. As the capacitance increases, MRR also increases. However there is the limit capacitance beyond which the MRR does not increase anymore. As the discharge area increases, the limit capacitance also increases.