• Title/Summary/Keyword: 방전관

Search Result 198, Processing Time 0.035 seconds

연속발진 도파형 이산화탄소 레이저의 이득계수 및 포화출력 측정 (Measurement of Gain Coefficient and Saturation Power of CW Waveguide CO_2$$ Laser)

  • 이승걸;김현태;박대윤
    • 한국광학회지
    • /
    • 제1권2호
    • /
    • pp.162-168
    • /
    • 1990
  • 내경이 2.1mm인 Pyrex 모세관을 사용하여 길이가 150mm인 도파형 이산화탄소 레이저를 제작하였으며, 공진기내에 임의의 손실을 가할 수 있는 ZnSe 손실판을 설치하여 공진기의 내부손실에 따른 출력변화를 여러 방전조건에 대해 측정하였다. 본 실험에 Rigrod 이론을 적용하여 내부손실에 따른 출력변화를 예측했으며 실험치로부터 포화출력 및 불포화 이득계수를 구할 수 있었다. 방전전류와 혼합기체의 유입률이 증가함에 따라 포화출력은 증가하며, 불포화 이득계수는 감소하는 경향을 볼 수 있었다.

  • PDF

회전형 탐촉자의 다중균열 분해능이 증기발생기 전열관의 구조건전성 평가에 미치는 영향 (An Effect on the Structural Integrity Assessment of Steam Generator Tubes with Resolution of Rotating Pancake Coils for Multiple Cracks)

  • 강용석;천근영;남민우;박재학
    • 비파괴검사학회지
    • /
    • 제34권5호
    • /
    • pp.356-361
    • /
    • 2014
  • 회전형 탐촉자(RPC)는 증기발생기 전열관의 결함 탐지 및 크기 측정 목적으로 널리 사용되고 있다. 손상이 탐지된 전열관에 대한 건전성 평가는 비파괴검사에서 얻어진 열화의 크기 정보를 바탕으로 수행되기 때문에 검사기술의 성능은 전열관의 건전성 평가에 직접적으로 영향을 미치게 된다. 동일 전열관의 인접한 거리에 다중균열이 존재할 경우 검사 기술의 결함 분해능에 제약이 따를 수 있으며 그 영향이 클 경우 근접한 다중균열이 상대적으로 큰 단일균열로 평가될 수 있으므로 전열관의 구조건전성 평가에 오류를 유발할 수 있게 된다. 따라서 본 연구에서는 방전가공으로 균열을 모사한 인공결함에 대한 RPC 탐촉자의 결함 분해능을 관찰하고 전열관의 구조건전성 평가에 미치는 영향을 살펴보았다. 동일 직선상에 놓인 다중균열은 매우 근접한 거리까지 개별균열 식별이 가능하여 건전성 평가에 미치는 영향이 없는 반면, 인접한 거리에 평행하게 놓인 균열의 경우는 RPC 탐촉자의 분해능이 낮아서 부정확한 결함 크기 정보가 얻어지므로 결함관의 파열압력 예측에 영향을 미칠 수 있다.

High Power RF Commissioning for S-band Electron LINAC

  • Park, Hyung Dal;Lee, Byeong-No;Song, Ki Baek;Cha, Sung Su;Kim, Yujong;Lee, Byung Cheol
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.111.2-111.2
    • /
    • 2013
  • 고주파 전자가속기는 고출력 RF 시스템으로 구동된다. 이러한 고주파 전자가속기에서 고출력 RF 시스템은 종종 고출력 방전으로 인해 가속관에 손상을 입힐 수 있기 때문에 조심스럽게 RF conditioning을 진행 하여야 한다. 일반적으로 RF conditioning은 아주 긴 시간을 필요로 하고, RF 출력을 서서히 높여가며 진행할 필요성이 있다. 한국원자력연구원에서는 9 MeV와 6 MeV 에너지를 출력하기 위해서는 가속관으로 RF 입력을 약 5.5 MW까지 RF conditioning을 진행하여야 한다. 따라서, 본 연구에서는 Klystron 최대 출력이 약 5.5 MW로 한국원자력연구원에서 개발된 S-band (2,856 MHz) RF 전자가속관에 RF conditioning을 진행 하였다. 가속관의 진공을 약 1.0e-7을 유지하면서 반복률을 10 Hz부터 180 Hz로 증가시켰고, RF 입력 파워는 약 6 MW까지 RF conditioning을 진행 하였다. 그 결과 짧은 시간에 RF commissioning을 진행할 수 있었다.

  • PDF

A Study on Bubbles Generated from Water Plasma for Application of DAF Process

  • 박준석;유승열;유승민;홍은정;석동찬;홍용철;노태협;이봉주
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.232-232
    • /
    • 2011
  • DAF는 기존 침전 공정에 비해 뛰어난 정수 품질과 빠른 처리 시간으로 차세대 정수 공정으로 각광 받고 있다. DAF는 기포 생성 방법에 따라 용존 공기 부상법, 분산 공기 부상법, 진공 부상법, 전해 부상법, 미생물학적 부상법 등이 있다. 이 중 가장 많이 쓰이는 방식은 용존 공기 부상법으로, 과포화 상태의 기체와 액체의 혼합액을 압력을 급격히 감소시켜 기포를 발생 시키는 방법이다. 이 방법은 기포의 발생은 많지만 장비의 크기가 거대하고 시설제조 비용이 많이 드는 단점이 있다. 수중에서 발생되는 플라즈마는 그 구조와 메카니즘에 따라 생성되는 버블의 양을 제어할 수 있음을 확인하였다. 모세관 형태의 전극을 이용한 수중 방전은 전원 공급 장치만 있다면 적은 공간으로도 효과적으로 기포를 생성 할 수 있기 때문에, 수중 방전을 이용하여 기포 발생 후 DAF에 적용 가능한지 알아보고자 한다. DAF공정에서 필요한 요인으로는 기포의 크기, 개수, 성분 물질 등이 있는데, 그 중 가장 핵심은 기포의 크기 이다. 그래서 간단한 전원 장치와 리액터 제작 후 방전에 최적화 된 전극으로 기포를 발생시켜 기포의 크기를 측정하였다. 기포의 크기는 전극의 직경과 방전공간의 비율에 따라 제어가 가능함을 확인하였고 평균 기포의 크기는 약 50 ${\mu}m$로서, DAF에 적용 할 수 있는 크기이다. 일반적으로 기포의 사이즈가 작을수록 입자 제거율이 높은데, 실제 DAF공정에서 사용되는 기포의 사이즈는 80 ${\mu}m$정도 이다. 따라서 개발된 기포 발생장치를 DAF 공정에 응용한다면 높은 효율을 가질 것으로 판단된다.

  • PDF

LCD 백라이트용 형광램프에서의 광 방출 광의 전파

  • 임유리;한국희;정종윤;임현교;조윤희;김현철;유동근;조광섭
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.417-417
    • /
    • 2010
  • 작은 직경의 외부 전극 형광램프와 냉음극 형광램프는 LCD-TV의 광원으로 사용하고 있다. 교류 전압으로 구동되는 외부전극 형광램프와 교류 및 직류 전압으로 구동되는 냉음극 형광램프에서 광 방출 신호를 관측하였다. 이러한 빛은 양광주의 고전압부에서 접지부로 $10^5-10^6\;m/s$의 속도로 전파한다. 램프에서 방출된 광이 양광주를 따라 전파하는 현상은 일반 형광등과 네온싸인관에서도 동일하게 관측된다. 이러한 빛의 전파 현상은 지난 70년의 형광 램프 역사상 처음 관측되었다. 양광주 영역의 플라즈마는 높은 전압과 수 십 kHz가 인가되는 전극부에서 발생한 고밀도 플라즈마의 확산으로 생성된다. 고전압이 인가된 전극부에서 발생한 고밀도의 플라즈마는 인가되어지는 구동 주파수에 해당하는 섭동으로 작용하여 플라즈마 파동으로 양광주 영역으로 전파된다. 이러한 플라즈마 파동은 고밀도 전극부에서 저밀도 양광주 영역으로 플라즈마 밀도의 차이에 의하여 된다. 이때 파동의 전파 속도는 관 전류에 따라 달라진다. 타운젠트 방전 이전의 저 전류일 때는 ${\sim}10^5\;m/s$이며, 타운젠트 방전 이후 글로우 방전에서의 전파 속도는 ${\sim}10^6\;m/s$로 증가한다. 또한 타운젠트 방전 이전의 저 전류에서는 파동이 감쇠하는 경향을 보이며, 고 전류에서의 파동의 감쇠는 매우 작다. 관측된 광신호의 결과로부터 전파되는 파동의 원인은 플라즈마 확산에 의한 밀도의 차이에 의한 것으로 해석된다. 즉, 수 십 kHz의 구동 주파수를 갖는 플라즈마 파동이 양광주의 플라즈마 밀도 구배에 의하여 전파된다. 이러한 파동은 높은 전압이 인가되는 전극부에서 낮은 전압부로 향하는 조류의 흐름과 같이 나타난다.

  • PDF