• Title/Summary/Keyword: 방재

Search Result 8,668, Processing Time 0.039 seconds

Development of Rainfall-runoff Analysis Algorithm on Road Surface (도로 표면 강우 유출 해석 알고리즘 개발)

  • Jo, Jun Beom;Kim, Jung Soo;Kwak, Chang Jae
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.4
    • /
    • pp.223-232
    • /
    • 2021
  • In general, stormwater flows to the road surface, especially in urban areas, and it is discharged through the drainage grate inlets on roads. The appropriate evaluation of the road drainage capacity is essential not only in the design of roads and inlets but also in the design of sewer systems. However, the method of road surface flow analysis that reflects the topographical and hydraulic conditions might not be fully developed. Therefore, the enhanced method of road surface flow analysis should be presented by investigating the existing analysis method such as the flow analysis module (uniform; varied) and the flow travel time (critical; fixed). In this study, the algorithm based on varied and uniform flow analysis was developed to analyze the flow pattern of road surface. The numerical analysis applied the uniform and varied flow analysis module and travel time as parameters were conducted to estimate the characteristics of rainfall-runoff in various road conditions using the developed algorithm. The width of the road (two-lane (6 m)) and the slope of the road (longitudinal slope of road 1 - 10%, transverse slope of road 2%, and transverse slope of gutter 2 - 10%) was considered. In addition, the flow of the road surface is collected from the gutter along the road slope and drained through the gutter in the downstream part, and the width of the gutter was selected to be 0.5 m. The simulation results were revealed that the runoff characteristics were affected by the road slope conditions, and it was found that the varied flow analysis module adequately reflected the gutter flow which is changed along the downstream caused by collecting of road surface flow at the gutter. The varied flow analysis module simulated 11.80% longer flow travel time on average (max. 23.66%) and 4.73% larger total road surface discharge on average (max. 9.50%) than the uniform flow analysis module. In order to accurately estimate the amount of runoff from the road, it was appropriate to perform flow analysis by applying the critical duration and the varied flow analysis module. The developed algorithm was expected to be able to be used in the design of road drainage because it was accurately simulated the runoff characteristics on the road surface.

A Study on the Current State of the Integrated Human Rights of the Elderly in Rural Areas of South Korea (농촌지역 거주 노인의 통합적 인권보장 실태에 관한 연구)

  • Ahn, Joonhee;Kim, MeeHye;Chung, SoonDool;Kim, SooJin
    • 한국노년학
    • /
    • v.38 no.3
    • /
    • pp.569-592
    • /
    • 2018
  • This study purported to investigate the current state of human rights of older adults residing in rural areas of Korea. The study utilized, as an analytic framework, 4 priority directions (1. "older persons and development", 2. "rural area development", 3. "advancing health and well-being into old age", and 4. "ensuring enabling and supportive environments") with 13 task actions recommended by Madrid International Plan of Action on Ageing (MIPAA). Furthermore, the study examined gender differences in all items included in the analytic framework. Data was collected by the face-to-face survey on 800 subjects aged 65 and over. Statistical analyses were conducted using STATA 13.0 program. The main results were summarized in order of 4 priority directions as follows. First, average working hours per day were 6.2, and men reportedly participated in economic activities and needed job training more than women, while women participated in lifelong education programs more than men. Awareness of fire and disaster prevention facilities was low in both genders. Second, accessibility to the support center for the elderly living alone as well as protective services for the vulnerable elderly was found to be low. IT-based services and networking were used more by men than women, and specifically, IT-based financial transactions and welfare services were least used. Third, medical check-ups and vaccinations were well received, while consistent treatments for chronic illnesses and long-term care services were relatively less given. In addition, accessibility to mental health service centers was considerably low. Fourth, although old house structures and the lack of convenience facilities were found to be circumstantial risk factors for these elders, experiences of receiving housing support services were scarce. The elderly were found to rely more on informal care, and concerns for their care were higher in women than men. Plus, accessibility to elderly abuse services was markedly low. Based on these results, discussed were implications for implementing policies and practical interventions to raise the levels of the human rights for this population.

Changing Trends of Climatic Variables of Agro-Climatic Zones of Rice in South Korea (벼 작물 농업기후지대의 연대별 기후요소 변화 특성)

  • Jung, Myung-Pyo;Shim, Kyo-Moon;Kim, Yongseok;Kim, Seok-Cheol;So, Kyu-Ho
    • Journal of Climate Change Research
    • /
    • v.5 no.1
    • /
    • pp.13-19
    • /
    • 2014
  • In the past, Korea agro-climatic zone except Jeju-do was classified into nineteen based on rice culture by using air temperature, precipitation, and sunshine duration etc. during rice growing periods. It has been used for selecting safety zone of rice cultivation and countermeasures to meteorological disasters. In this study, the climatic variables such as air temperature, precipitation, and sunshine duration of twenty agro-climatic zones including Jeju-do were compared decennially (1970's, 1980's, 1990's, and 2000's). The meteorological data were obtained in Meteorological Information Portal Service System-Disaster Prevention, Korea Meteorological Administration. The temperature of 1970s, 1980s, 1990s, and 2000s were $12.0{\pm}0.14^{\circ}C$, $11.9{\pm}0.13^{\circ}C$, $12.2{\pm}0.14^{\circ}C$, and $12.6{\pm}0.13^{\circ}C$, respectively. The precipitation of 1970s, 1980s, 1990s, and 2000s were $1,270.3{\pm}20.05mm$, $1,343.0{\pm}26.01mm$, $1,350.6{\pm}27.13mm$, and $1,416.8{\pm}24.87mm$, respectively. And the sunshine duration of 1970s, 1980s, 1990s, and 2000s were $421.7{\pm}18.37hours$, $2,352.4{\pm}15.01hours$, $2,196.3{\pm}12.32hours$, and $2,146.8{\pm}15.37hours$, respectively. The temperature in Middle-Inland zone ($+1.2^{\circ}C$) and Eastern-Southern zone ($+1.1^{\circ}C$) remarkably increased. The temperature increased most in Taebak highly Cold zone ($+364mm$) and Taebak moderately Cold Zone ($+326mm$). The sunshine duration decreased most in Middle-Inland Zone (-995 hours). The temperature (F=2.708, df=3, p= 0.046) and precipitation (F=5.037, df=3, p=0.002) increased significantly among seasons while the sunshine duration decreased significantly(F=26.181, df=3, p<0.0001) among seasons. In further study, it will need to reclassify agro-climatic zone of rice and it will need to conduct studies on safe cropping season, growth and developing of rice, and cultivation management system etc. based on reclassified agro-climatic zone.

Development of a Storage Level and Capacity Monitoring and Forecasting Techniques in Yongdam Dam Basin Using High Resolution Satellite Image (고해상도 위성자료를 이용한 용담댐 유역 저수위/저수량 모니터링 및 예측 기술 개발)

  • Yoon, Sunkwon;Lee, Seongkyu;Park, Kyungwon;Jang, Sangmin;Rhee, Jinyung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1041-1053
    • /
    • 2018
  • In this study, a real-time storage level and capacity monitoring and forecasting system for Yongdam Dam watershed was developed using high resolution satellite image. The drought indices such as Standardized Precipitation Index (SPI) from satellite data were used for storage level monitoring in case of drought. Moreover, to predict storage volume we used a statistical method based on Principle Component Analysis (PCA) of Singular Spectrum Analysis (SSA). According to this study, correlation coefficient between storage level and SPI (3) was highly calculated with CC=0.78, and the monitoring and predictability of storage level was diagnosed using the drought index calculated from satellite data. As a result of analysis of principal component analysis by SSA, correlation between SPI (3) and each Reconstructed Components (RCs) data were highly correlated with CC=0.87 to 0.99. And also, the correlations of RC data with Normalized Water Surface Level (N-W.S.L.) were confirmed that has highly correlated with CC=0.83 to 0.97. In terms of high resolution satellite image we developed a water detection algorithm by applying an exponential method to monitor the change of storage level by using Multi-Spectral Instrument (MSI) sensor of Sentinel-2 satellite. The materials of satellite image for water surface area detection in Yongdam dam watershed was considered from 2016 to 2018, respectively. Based on this, we proposed the possibility of real-time drought monitoring system using high resolution water surface area detection by Sentinel-2 satellite image. The results of this study can be applied to estimate of the reservoir volume calculated from various satellite observations, which can be used for monitoring and estimating hydrological droughts in an unmeasured area.

The Nitrogen Behavior in the Continuous Inflow SBR according to Variations of Internal Recycling Rate (반송률 변화에 따른 연속 유입식 SBR 공정의 질소 거동)

  • Kim, Su-Yeon;Choi, Yong-Bum;Jo, You-Na;Han, Dong-Joon;Kwon, Jae-Hyouk
    • Clean Technology
    • /
    • v.25 no.3
    • /
    • pp.231-237
    • /
    • 2019
  • The BOD removal efficiency according to HRT of the continuous inflow SBR process was decreased from 92.1 ~ 96.0% at HRT 9 ~ 15 h to 86.9 ~ 90.7% at HRT 6 h, but a stable removal efficiency was shown up to HRT 6 h. The T-N removal rate was decreased to 80.1 ~ 87.9% at HRT 12 ~ 15 h, to 71.9 ~ 87.0% at HRT 9 h, and to 60.1 ~ 65.7% at HRT 6 h. As a result of the test of removing organic matter and nitrogen, the optimum HRT of the continuous inflow SBR reactor is determined as 9 h. The TCODcr removal efficiency was 88.4 ~ 96.0% and the TBOD removal efficiency was 92.1 ~ 98.1% as a result of examination of organic matter removal efficiency according to a change in the recycling rate (1 ~ 5Q) at HRT 9 h, suggesting that the a change in the recycling rate has a minimal effect on the removal of organic matter. The T-N removal efficiency was 70.3 ~ 80.4% at 1 ~ 2Q, 77.2 ~ 85.6% at 3Q and 61.5 ~ 80.8% at 4 ~ 5Q according to a change in the recycling rate. The TP removal efficiency was reduced to 75.0 ~ 84.6% at 1 ~ 4Q and to 63.3 ~ 72.4% at 5Q. This is presumably because the release and ingestion of phosphorus (P) by microorganisms is not performed smoothly at 5Q or more. Therefore, the optimum recycling rate for removing organic matter and nutrients was found to be 3Q.

A Case Study: Improvement of Wind Risk Prediction by Reclassifying the Detection Results (풍해 예측 결과 재분류를 통한 위험 감지확률의 개선 연구)

  • Kim, Soo-ock;Hwang, Kyu-Hong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.3
    • /
    • pp.149-155
    • /
    • 2021
  • Early warning systems for weather risk management in the agricultural sector have been developed to predict potential wind damage to crops. These systems take into account the daily maximum wind speed to determine the critical wind speed that causes fruit drops and provide the weather risk information to farmers. In an effort to increase the accuracy of wind risk predictions, an artificial neural network for binary classification was implemented. In the present study, the daily wind speed and other weather data, which were measured at weather stations at sites of interest in Jeollabuk-do and Jeollanam-do as well as Gyeongsangbuk- do and part of Gyeongsangnam- do provinces in 2019, were used for training the neural network. These weather stations include 210 synoptic and automated weather stations operated by the Korean Meteorological Administration (KMA). The wind speed data collected at the same locations between January 1 and December 12, 2020 were used to validate the neural network model. The data collected from December 13, 2020 to February 18, 2021 were used to evaluate the wind risk prediction performance before and after the use of the artificial neural network. The critical wind speed of damage risk was determined to be 11 m/s, which is the wind speed reported to cause fruit drops and damages. Furthermore, the maximum wind speeds were expressed using Weibull distribution probability density function for warning of wind damage. It was found that the accuracy of wind damage risk prediction was improved from 65.36% to 93.62% after re-classification using the artificial neural network. Nevertheless, the error rate also increased from 13.46% to 37.64%, as well. It is likely that the machine learning approach used in the present study would benefit case studies where no prediction by risk warning systems becomes a relatively serious issue.

A History of Termite Control and Improvements to Prevent Termites in Wooden Architectural Heritage (국내외 흰개미 방제 기술의 발달 과정과 목조건축문화재의 흰개미 피해 저감을 위한 방안)

  • LEE, Sangbin;IM, Ikgyun;KIM, Sihyun
    • Korean Journal of Heritage: History & Science
    • /
    • v.54 no.2
    • /
    • pp.194-215
    • /
    • 2021
  • Termites are important decomposers in the ecosystem. They are also economically significant structural pests. In this study, we reviewed the developments of termite control and recent research on termite management to provide information on the prevention and control of termites. In Korea, most of the damage to wooden historical buildings is caused by subterranean termites. Reticulitermes speratus kyushuensis is the main species, which is widely found throughout the country. In the early 1900s, inorganic insecticides, such as arsenic dust, were used for termite control. After the synthesis of chlorinated hydrocarbon pesticide in the 1940s, it was widely utilized and demonstrated high termite control efficacy. However, chlorinated hydrocarbon insecticides were later banned, disappearing from markets after reports emerged concerning environmental contamination and toxicity to humans. Therefore, the termite control industry sought a new termiticide; hence many pesticides were utilized for termite control. Organophosphate (1960s), carbamate (1970s), pyrethroid, and insect growth inhibitor (1980s) were newly synthesized and adopted. In the 1990s, the first commercial baits using chitin synthesis inhibitors (CSI) were developed, providing a means to eliminate an entire colony of subterranean termites around a structure. Many studies have been carried out on soil termiticides (liquid termiticides) and CSI baits to increase their efficacy, and different baits such as aboveground bait stations, fluid bait, and high-durability bait were also developed in the 2000s. In addition, the paradigm of termite control has shifted from localized treatments using soil termiticides to area-wide pest management using CSI baits to create termite-free zones and protect buildings over time. Termite infestations in wooden historical buildings in Korea have been reported since 1980, and considerable attention was drawn in the 1990s when several UNESCO world heritages such as the Jongmyo Shrine and the Janggyeong Panjeon Depositories of Haeinsa Temple were infested by subterranean termites. Since then, a survey of termite infestation in wooden architectural heritage has been conducted, and the National Research Institute of Cultural Heritage and Heritage Care Program regularly monitors those properties. Finally, we suggest termite management using primarily CSI baits, selective application of various soil treatments applied to the object, foundation soil treatment, research and development of durable termite baits, application of area-wide programs for wooden-building complexes, application of integrated termite management (ITM), and regular education for owners and managers to prevent and reduce termite damage.

A Study on the Change of Road in the Changdeokgung Palace Rear Garden between Modern and Contemporary Period (근현대기 창덕궁 후원의 동선 변화에 관한 연구)

  • HA, Taeil;KIM, Choongsik
    • Korean Journal of Heritage: History & Science
    • /
    • v.54 no.2
    • /
    • pp.120-135
    • /
    • 2021
  • Changdeokgung Rear Garden is an important place to show the essence of the garden culture of the Joseon Dynasty. In the garden landscape experience, the restoration of the road completes the system of connecting the main spaces. Therefore, the restoration of the road requires accurate understanding of its creation, extinction, and maintenance. The purpose of this study was to detail the changes in the path that occurred in the Changdeokgung Palace Rear Garden from the late Joseon Dynasty to the modern and contemporary period by analyzing literature and drawing materials. For a time-series analysis, "Donggwoldo" and "Donggwoldohyeong" produced in the Joseon Dynasty, along with "Changdeokgung Plan Drawing" produced in modern and contemporary times, and aerial photographs were used. Drawings and photographs of different coordinate systems were transformed into one coordinate system in the geographic information system ArcGIS to compare changes in the movements of different periods. The results of the study are as follows. First, a total of 37 sections have been used since Japanese colonial era, of which 13 have been maintained, 14 have disappeared, and 10 have been newly established. Among the extinction sections, the road north of Neungheojeong Pavilion is considered to be an urgent place to connect the space to the garden and restore it to enjoy the scenery. In the new section, it seems necessary to establish a new alternative road or shorten the section for the connecting section between Daebodan and Okryucheon. Second, it was revealed that the biggest and most frequent changes to the road system in the garden were Japanese colonial era and renovations in the 1970s. It is worth noting the changes in the road since the 1970s, rather than Japanese colonial era, where it was difficult to manage the gardens independently. The access road to Okryucheon remained in its original shape until the 1990s, but it was renovated to its current shape due to misperception of the original shape. A project is needed to find out the cause of the change in this period and restore the damaged original shape. The biggest achievement of this study is that it revealed the changes in the garden path of Changdeokgung Palace in modern and contemporary times. The biggest achievement of this study is that it revealed the changes in the road of Changdeokgung Palace Rear Gardens in modern and contemporary times. However, there is a limitation that it has not been able to clearly present the location and shape that should be restored because it has not found data on landscaping plans or maintenance. In order to restore the road using the data revealed in this study, it seems necessary to consider realistic problems such as current space utilization, viewing system, disaster prevention and maintenance.

Study of Minimum Passage Size of Subterranean Termites (Reticulitermes speratus kyushuensis) (국내 흰개미(Reticulitermes speratus kyushuensis)의 최소 통과 직경 연구)

  • Kim, Sihyun;Lee, Sangbin;Lim, Ikgyun
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.4
    • /
    • pp.188-197
    • /
    • 2020
  • Termites play an important role as decomposers of the forest ecosystem, while simultaneously causing enormous damage to wooden structures. Currently, two species of subterranean termites have been reported in Korea, and termite damage to historical wooden buildings is occurring nationwide due to climate change, forest fertility, and the locational characteristics of historical wooden buildings. Subterranean termites make their nests underground or inside timber. Termites move underground and access wooden structures through the lower parts of the buildings, adjacent to the ground. Once termites attack the wooden structures, it not only spoils the authenticity of cultural heritage structure, but also hampers structural stability due to the decrease in the strength of the material. Therefore, it is important to prevent termite damage before it occurs. Chemical treatments are mainly used in Korea to control and prevent the damage. In foreign countries, physical barriers are also used to prevent entry to wooden buildings, along with chemical treatments. Physical barriers involve installing nets or particles that termites cannot pass through in the lower part of the building, around the pipes, and between the edges of the building or exterior walls and interior materials. Advantages of a physical barrier are that it is an eco-friendly method, maintains long-term effect after installation, and does not require the use of chemical treatments. Prior to applying physical barriers, studies into the characteristics of termite species must be undertaken. In this study, we evaluated the minimum passage size that each caste of Reticulitermes speratus kyushuensis can move through. We found that workers, soldiers, and secondary reproductive termites were able to pass through diameters of 0.7mm, 0.9mm, and 1.1mm respectively. Head height of termites was an important factor in determining the minimum passing size. Results from the current study will be used as a basis to design the mesh size for physical barriers to prevent damage by termites in historical wooden buildings in Korea.

An Analysis of Termite(R. speratus kyushuensis) Damage to Nationally Designated Wooden Architectural Heritage in Korea (국가지정 목조건축문화재의 흰개미(R. speratus kyushuensis) 피해 현황 분석)

  • KIM, Sihyun;CHUNG, Yongjae
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.2
    • /
    • pp.102-111
    • /
    • 2022
  • Termites are a group of social insects that are one of the primary causes of damage to wooden architectural heritage. Since termite damage impairs the authenticity and structural stability of cultural heritage, it is imperative to prevent it. This study examines the extent of termite damage to wooden architectural heritage as part of efforts to prevent termite damage to nationally designated wooden architectural heritage sites across the country. The extent of termite damage to each cultural heritage was assessed qualitatively and quantitatively and comparatively analyzed by region using the results of the "Investigation on Biological Damage to Wooden Architectural Heritages" conducted by the National Research Institute of Cultural Heritage from 2016 to 2019. It involved 362 nationally designated wooden architectural heritages(25 national treasures, 157 treasures, 180 national folklore cultural heritages) and 1,104 buildings. The results were as follows: termite detection dogs reacted at 317(87.6%) of the 362 wooden heritages, with visible termite damage observed in 185 cases(51.1%). Furthermore, termite damage was confirmed using one of two methods(detection dogs or visual inspection) in 324 cases(89.5%). Of the 1,104 buildings, termite detection dogs reacted at 668(60.5%), while 339(30.7%) showed visible termite damage. Employing one of the two methods, damage was confirmed in 702 buildings(63.6%). The country was categorized into nine regions(Seoul Metropolitan Area, Gangwon, Chungbuk, Chungnam, Jeonbuk, Jeonnam, Gyeongbuk, Gyeongnam, and Jeju) to examine the termite damage rate and the degree of damage to each cultural heritage according to location. Termite detection dogs reacted to more than 70% of the cultural heritage in all regions. Visible damage was minimal in the Seoul metropolitan area(32.1%) and Gangwon(21.4%) but severe in Chungnam(65.6%), Jeonnam(67.3%), and Gyeongnam(68.2%). By quantifying the degree of termite damage of each cultural heritage as a ratio of the absence of termite damage among the total absence, the average termite damage of the cultural heritage across the country was 9.2%. Regional variance analysis showed that the cultural heritage in Jeonbuk and Jeonnam showed a statistically significantly higher degree of termite damage than the cultural heritage in the Seoul metropolitan area, Chungbuk, and Gyeongbuk. This paper comprehensively analyzed termite damage to nationally designated wooden architectural heritage. The findings are expected to be valuable in establishing policies for the preservation and management of cultural heritage sites in the future.