DOI QR코드

DOI QR Code

Application of Fire Risk and Fire Risk Rating Assessment for Four Species of Wood According to Chung's Equation-XII

Chung's Equation-XII에 의한 목재 4종의 화재위험성 및 화재위험성 등급 평가 적용

  • Yeong-Jin Chung (The National Safety Environment Institute (NSEI)) ;
  • Eui Jin (Fire & Disaster Prevention Research Center, Kangwon National University)
  • 정영진 (국가안전환경원) ;
  • 진의 (강원대학교 소방방재연구센터)
  • Received : 2023.12.28
  • Accepted : 2024.01.11
  • Published : 2024.02.10

Abstract

The fire risk and fire safety of four types of wood were comprehensively evaluated according to Chung's equation-XII. White ash, willow, fraxinus mandshurica, and sagent cherry trees were selected as test specimens. A cone calorimetery (ISO 5660-1) was used to examine the combustion characteristics of the test piece, and finally, the fire risk rating (FRR) was predicted using the fire risk index-XII (FRI-XII). The predicted fire performance index-X (FPI-X) and fire growth index-X (FGI-X) ranged from 469.03 to 1109.73 s2/kW and 0.0009 to 0.0280 kW/s2, respectively. Additionally, the fire performance index-XI (FPI-XI) and fire growth index-XI (FGI-XI) ranged from 0.41 to 0.97 and 1.11 to 3.11, respectively. The fire risk index-XII (FRI-XII), representing a fire risk rating, showed that the fire risk of frasxinus mandsurica tree (FM) was very high at 7.60 (fire risk rating: D). And it was compared with Chung's equation-IX, fire risk index-IX (FRI-IX). The fire risk ratings according to FRI-IX and FRI-XII were generally high for willow and frasxinus mandsurica trees. Additionally, the results of FRI-XII and FRI-IX had a similar relationship, and the size of each fire safety rating closely matched each other.

Chung's equation-XII에 의하여 4종의 목재에 대한 화재위험성 및 화재안전성을 종합적으로 평가하였다. 시험편은 미국물푸레나무, 버드나무, 들메나무, 산벚나무를 선정하였다. 시험편의 연소특성 시험은 콘칼로리미터(ISO 5660-1)를 사용하였으며, 최종적으로 화재위험성지수-XII (FRI-XII)를 이용하여 화재위험성등급(FRR)을 예측하였다. 예측된 화재성능지수-X (FPI-X)과 화재성장지수-X (FGI-X)은 각각 469.03~1109.73 s2/kW와 0.0009~0.0280 kW/s2로 나타났다. 또한 화재성능지수-XI (FPI-XI)과 화재성장지수-XI (FGI-XI)은 각각 0.41~0.97와 1.11~3.11이었다. 화재위험성 등급인 화재위험성지수-XII (FRI-XII)는 들메나무가 7.60 (화재위험성 등급: D)으로서 가장 높은 화재위험성을 나타내었다. 그리고 Chung's equation-IX인 화재위험성지수-IX (FRI-IX)와 비교하였다. FRI-IX과 FRI-XII에 의한 화재위험성 등급은 버드나무와 들메나무가 공통적으로 높았다. 또한 FRI-XII와 FRI-IX에 의한 결과는 유사한 관계가 이루어졌으며, 각각의 화재안성등급의 크기는 서로 간 근접하게 일치하였다.

Keywords

References

  1. J. Buzek and E. Gyoori, Regulation (EU) No 305/2011 of the european parliament and of the council of 9 March 2011, Laying down harmonised conditions for the marketing of construction products and repealing council directive 89/106/EEC text with EEA relevance, Official J. European Unions, L 88, 5-43 (2011).
  2. V. Babrauskas, Effective measurement techniques for heat, smoke and toxic fire gases, Fire Saf. J., 17, 13-26 (1991). https://doi.org/10.1016/0379-7112(91)90010-V
  3. V. Babrauskas and S. J. Grayson, Heat Release in Fires, 210-217, Elsevier, London, UK (1992).
  4. CBUF Report, Fire Safety of Upholstered Furniture - The Final Report on the CBUF Research Programme, B., Sundstrom (ed.), EUR 16477 EN, European Commission, Measurements And Testing Report, Contract No.3478/1/0/196/11-BCR-DK(30), Interscience Communications, London, UK (1995).
  5. M. M. Hirschler, Analysis of and potential correlations between fire tests for electrical cables, and how to use This information for fire hazard assessment, Fire Technol., 33, 291-315 (1997). https://doi.org/10.1023/A:1015384109580
  6. M. Janssens, Fundamental Thermophysical Characteristics of Wood and Their Role in Enclosure Fire Growth, PhD Thesis, University of Gent, Belgium (1991).
  7. ISO 5660-1, Reaction-to-fire tests-heat release, smoke production and mass loss rate-part 1: Heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement), Genever, Switzerland (2015).
  8. M. A. Delichatsios, Smoke yields from turbulent buoyant jet flames, Fire Saf. J., 20, 299-311 (1993). https://doi.org/10.1016/0379-7112(93)90052-R
  9. H. C. Tran, Experimental data on wood materials. In: V. Babrauskas and S. J. Grayson (eds.). Heat Release in Fires, 357-372, Elsevier Applied Science, New Yok, USA (1992).
  10. M. Spearpoint and J. Quintiere, Predicting the piloted ignition of wood in the cone calorimeter using an integral model-effect of species, grain orientation and heat flux, Fire Saf. J., 36, 391-415 (2001). https://doi.org/10.1016/S0379-7112(00)00055-2
  11. M. Delichatsios, B. Paroz, and A. Bhargava, Flammability properties for charring materials, Fire Saf. J., 38, 219-228 (2003). https://doi.org/10.1016/S0379-7112(02)00080-2
  12. B. Tawiah, B. Yu, R. K. K. Yuen, Y. Hu, R. Wei, J. H. Xin, and B. Fei, Highly efficient flame retardant and smoke suppression mechanism of boron modified graphene oxide/poly(lactic acid) nanocomposites, Carbon, 150, 8-20 (2019). https://doi.org/10.1016/j.carbon.2019.05.002
  13. L. Yan, Z. Xu, and N. Deng, Effects of polyethylene glycol borate on the flame retardancy and smoke suppression properties of transparent fire-retardant coatings applied on wood substrates, Prog. Org. Coat., 135, 123-134 (2019). https://doi.org/10.1016/j.porgcoat.2019.05.043
  14. Y. J. Chung and E. Jin, Smoke generation by burning test of cypress plates treated with boron compounds, Appl. Chem. Eng., 29, 670-676 (2018).
  15. Y. J. Chung and E. Jin, Risk assessment of smoke generated during combustion for some wood, Appl. Chem. Eng., 33, 373-380 (2022).
  16. Y. J. Chung and E. Jin, Rating evaluation of fire risk for combustible materials in case of fire, Appl. Chem. Eng., 32, 75-82 (2021).
  17. Y. J. Chung and E. Jin, Rating of fire risk of combustible materials by the new Chung's Equation-IX, Appl. Chem. Eng., 34, 144-152 (2023).
  18. Y. J. Chung and E. Jin, Fire risk index and grade evaluation of combustible materials by the new Chung's Equation-XII, Appl. Chem. Eng., 34, 388-396 (2023).
  19. Y. J. Chung and E. Jin, Evaluation of fire risk rating of building materials by Chung's Equation-IX, Fire Sci. Eng., 37, 1-11 (2023).
  20. W. T. Simpson, Drying and control of moisture content and dimensional changes. Wood handbook wood as an engineering material. USDA Forest service, Forest products laboratory, General technical report FPL, GTR-113, 12.1-12.20, Madison, Wisconsin, USA (1999).
  21. M. M. Hirschler, Use of heat release rate to predict whether Individual furnishings would cause self propagating fires, Fire Saf. J., 32, 273-296 (1999). https://doi.org/10.1016/S0379-7112(98)00037-X
  22. Y. J. Chung and E. Jin, Assessment and prediction of fire risk grades of wood species in different storage environments, Fire Sci. Eng., 36, 83-92 (2022).
  23. Y. J. Chung and E. Jin, Assessment of the fire risk index and fire risk rating for five wood species according to Chung's Equation-XII, Fire Sci. Eng., 37, 116-125 (2023). https://doi.org/10.7731/KIFSE.2f976c20
  24. J. D. Dehaan, Kirk's Fire Investigation, 5th ed., 84-112, Pearson, London, England (2002).
  25. F. M. Pearce, Y. P. Khanna, and D. Raucher, Thermal analysis in polymer flammability. In: E. A. Turi (eds.). Thermal Characterization of Polymeric Materials, 793-843, Academic Press, New York, USA, (1981).
  26. V. Babrauskas, Development of the cone calorimeter - A Bench-scale, heat release rate apparatus based on oxygen consumption, Fire Mater., 8, 81-95 (1984). https://doi.org/10.1002/fam.810080206
  27. Y. J. Chung, Comparison of combustion properties of native wood species used for fire pots in Korea, J. Ind. Eng. Chem., 16, 15-19 (2010). https://doi.org/10.1016/j.jiec.2010.01.031
  28. B. Schartel and T. R. Hull, Development of firer-retarded materials-interpretation of cone calorimeter data, Fire Mater., 31, 327-354 (2007). https://doi.org/10.1002/fam.949
  29. N. Hirota and M. Hiroi, The later studies on the camphor tree, on the leaf oil of each practical form and its utilisation, Perfumery and Essential Oil Record, 58, 364-367 (1967).