References
- J. Buzek and E. Gyoori, Regulation (EU) No 305/2011 of the european parliament and of the council of 9 March 2011, Laying down harmonised conditions for the marketing of construction products and repealing council directive 89/106/EEC text with EEA relevance, Official J. European Unions, L 88, 5-43 (2011).
- V. Babrauskas, Effective measurement techniques for heat, smoke and toxic fire gases, Fire Saf. J., 17, 13-26 (1991). https://doi.org/10.1016/0379-7112(91)90010-V
- V. Babrauskas and S. J. Grayson, Heat Release in Fires, 210-217, Elsevier, London, UK (1992).
- CBUF Report, Fire Safety of Upholstered Furniture - The Final Report on the CBUF Research Programme, B., Sundstrom (ed.), EUR 16477 EN, European Commission, Measurements And Testing Report, Contract No.3478/1/0/196/11-BCR-DK(30), Interscience Communications, London, UK (1995).
- M. M. Hirschler, Analysis of and potential correlations between fire tests for electrical cables, and how to use This information for fire hazard assessment, Fire Technol., 33, 291-315 (1997). https://doi.org/10.1023/A:1015384109580
- M. Janssens, Fundamental Thermophysical Characteristics of Wood and Their Role in Enclosure Fire Growth, PhD Thesis, University of Gent, Belgium (1991).
- ISO 5660-1, Reaction-to-fire tests-heat release, smoke production and mass loss rate-part 1: Heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement), Genever, Switzerland (2015).
- M. A. Delichatsios, Smoke yields from turbulent buoyant jet flames, Fire Saf. J., 20, 299-311 (1993). https://doi.org/10.1016/0379-7112(93)90052-R
- H. C. Tran, Experimental data on wood materials. In: V. Babrauskas and S. J. Grayson (eds.). Heat Release in Fires, 357-372, Elsevier Applied Science, New Yok, USA (1992).
- M. Spearpoint and J. Quintiere, Predicting the piloted ignition of wood in the cone calorimeter using an integral model-effect of species, grain orientation and heat flux, Fire Saf. J., 36, 391-415 (2001). https://doi.org/10.1016/S0379-7112(00)00055-2
- M. Delichatsios, B. Paroz, and A. Bhargava, Flammability properties for charring materials, Fire Saf. J., 38, 219-228 (2003). https://doi.org/10.1016/S0379-7112(02)00080-2
- B. Tawiah, B. Yu, R. K. K. Yuen, Y. Hu, R. Wei, J. H. Xin, and B. Fei, Highly efficient flame retardant and smoke suppression mechanism of boron modified graphene oxide/poly(lactic acid) nanocomposites, Carbon, 150, 8-20 (2019). https://doi.org/10.1016/j.carbon.2019.05.002
- L. Yan, Z. Xu, and N. Deng, Effects of polyethylene glycol borate on the flame retardancy and smoke suppression properties of transparent fire-retardant coatings applied on wood substrates, Prog. Org. Coat., 135, 123-134 (2019). https://doi.org/10.1016/j.porgcoat.2019.05.043
- Y. J. Chung and E. Jin, Smoke generation by burning test of cypress plates treated with boron compounds, Appl. Chem. Eng., 29, 670-676 (2018).
- Y. J. Chung and E. Jin, Risk assessment of smoke generated during combustion for some wood, Appl. Chem. Eng., 33, 373-380 (2022).
- Y. J. Chung and E. Jin, Rating evaluation of fire risk for combustible materials in case of fire, Appl. Chem. Eng., 32, 75-82 (2021).
- Y. J. Chung and E. Jin, Rating of fire risk of combustible materials by the new Chung's Equation-IX, Appl. Chem. Eng., 34, 144-152 (2023).
- Y. J. Chung and E. Jin, Fire risk index and grade evaluation of combustible materials by the new Chung's Equation-XII, Appl. Chem. Eng., 34, 388-396 (2023).
- Y. J. Chung and E. Jin, Evaluation of fire risk rating of building materials by Chung's Equation-IX, Fire Sci. Eng., 37, 1-11 (2023).
- W. T. Simpson, Drying and control of moisture content and dimensional changes. Wood handbook wood as an engineering material. USDA Forest service, Forest products laboratory, General technical report FPL, GTR-113, 12.1-12.20, Madison, Wisconsin, USA (1999).
- M. M. Hirschler, Use of heat release rate to predict whether Individual furnishings would cause self propagating fires, Fire Saf. J., 32, 273-296 (1999). https://doi.org/10.1016/S0379-7112(98)00037-X
- Y. J. Chung and E. Jin, Assessment and prediction of fire risk grades of wood species in different storage environments, Fire Sci. Eng., 36, 83-92 (2022).
- Y. J. Chung and E. Jin, Assessment of the fire risk index and fire risk rating for five wood species according to Chung's Equation-XII, Fire Sci. Eng., 37, 116-125 (2023). https://doi.org/10.7731/KIFSE.2f976c20
- J. D. Dehaan, Kirk's Fire Investigation, 5th ed., 84-112, Pearson, London, England (2002).
- F. M. Pearce, Y. P. Khanna, and D. Raucher, Thermal analysis in polymer flammability. In: E. A. Turi (eds.). Thermal Characterization of Polymeric Materials, 793-843, Academic Press, New York, USA, (1981).
- V. Babrauskas, Development of the cone calorimeter - A Bench-scale, heat release rate apparatus based on oxygen consumption, Fire Mater., 8, 81-95 (1984). https://doi.org/10.1002/fam.810080206
- Y. J. Chung, Comparison of combustion properties of native wood species used for fire pots in Korea, J. Ind. Eng. Chem., 16, 15-19 (2010). https://doi.org/10.1016/j.jiec.2010.01.031
- B. Schartel and T. R. Hull, Development of firer-retarded materials-interpretation of cone calorimeter data, Fire Mater., 31, 327-354 (2007). https://doi.org/10.1002/fam.949
- N. Hirota and M. Hiroi, The later studies on the camphor tree, on the leaf oil of each practical form and its utilisation, Perfumery and Essential Oil Record, 58, 364-367 (1967).