• 제목/요약/키워드: 방열판

검색결과 169건 처리시간 0.023초

A Study on the Thermal Design of the Active Antenna System (능동형 안테나 시스템의 방열설계에 관한 연구)

  • Joung, Yong-In;Kwon, Min-Sang;Ryu, Jun-Suk;Park, Dong-Myung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제46권8호
    • /
    • pp.687-693
    • /
    • 2018
  • In this paper, we studied on the thermal design of the active antenna system for stable performance considering thermal reliability. The active antenna has high performance and heat flux elements in T/R modules. Thermal heating of elements in T/R modules has to be dissipated effectively and the antenna has to be operated over the range of suggested temperature by the thermal design. T/R modules of high heat flux in the active antenna can be dissipated effectively by liquid cooling. In this study, we studied on the thermal design including the liquid cooling system to optimize the thermal performance of the active antenna. And the thermal design was verified by numerical analysis.

Study on copper end-tab shape for maximum heat discharging performance (방열 성능 향상을 위한 구리 엔드 탭의 최적형상 연구)

  • Choi, Yeou-Myeong;Choi, Yoon-Hwan;Cho, Sang-Myung;Park, Jung-Hyun;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제41권1호
    • /
    • pp.1-7
    • /
    • 2017
  • When implementing butt joint welding of two plates, it is useful to attach end-tabs made of a metal with high heat conductivity (e.g., copper) at the front and back sides of the welded plates to prevent the bead from rolling down and prevent defects that may occur at the tips of the weld zone. In this study, the fin shape, which is known to have good heat discharging characteristics by natural convection, has been applied to enhance the cooling performance of the end-tab. From both experiment and numerical analysis, it was confirmed that end-tabs with fin-shaped holes have better heat discharging performance than end-tabs without holes. Through thermal and fluid flow analysis, the cooling rates of end-tabs with different hole shapes were estimated in order to figure out characteristics of shape factor that are important for the heat discharging performance. As a result, we found that the structure including vertical fins with optimal fin gap was the best-performing shape.

A Design of Heat-Sink and DMX512 Communication Control for High-Power LEDs (고출력 LED 방열 및 DMX512 통신 제어 설계)

  • Kim, Ki-Yun;Ham, Kwang-Keun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제38C권8호
    • /
    • pp.725-732
    • /
    • 2013
  • Recently, various applications for LED lightings are growing continuously due to their better performances such as low power consumption, longer life time, operation speed, controllability, high quality color rendering, and sustainability. However, in developing the high-powered LEDs illumination system, heat-sink problem is one of the important obstacle. In this paper, a heat-sink design with multi-layered structure for high-powered LEDs is proposed, which is composed of metal core PCB, heat-pipes, heat-sink plates, and fans. And also, in this paper, a design for LED controls using DMX512 protocols through RS-485 communications is proposed, which is considered as de facto international standard in LEDs illumination control and is widely used in landscape lighting and stage lighting. In this paper, LED control and its application techniques are introduced and the method of wireless remote control for main controller is proposed.

A Study on the Thermal Characteristics of COB LED using Thermoelectric Element (열전소자를 이용한 COB LED의 열적 특성 분석에 관한 연구)

  • Kim, Hyo-Jun;Kim, Tae-Hyung;Kim, Yong-Kab;Hoang, Geun-Chang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • 제9권12호
    • /
    • pp.1435-1440
    • /
    • 2014
  • This paper was designed to analyze thermal properties using thermoelectric element for air-cooling heat dissipation of 13.2W-class COB LED. For comparative analysis with generally used air cooling methods, the heat sink was designed and produced, and this experiment was conducted to measure the temperature distribution using a contact thermometer while the COB LED was operating for 100 minutes. One result was about $75^{\circ}C$ for the general cooling method, and the other was $57^{\circ}C$ while the thermoelectric element was operating with applying the current of 0.8A to the thermoelectric element. This results confirmed that the method of applying thermoelectric element was much better in the dissipation of thermal condense on the COB LED than that of the general air cooling one. The temperature on the contact points of COB LED using thermoelectric element was decreased about 31% compared with the air cooling method from $75^{\circ}C$ to $57^{\circ}C$.

Characterization of a Thermal Interface Material with Heat Spreader (전자부품의 방열방향에 따른 접촉열전도 특성)

  • Kim, Jung-Kyun;Nakayama, Wataru;Lee, Sun-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제27권1호
    • /
    • pp.91-98
    • /
    • 2010
  • The increasing of power and processing speed and miniaturization of central processor unit (CPU) used in electronics equipment requires better performing thermal management systems. A typical thermal management package consists of thermal interfaces, heat dissipaters, and external cooling systems. There have been a number of experimental techniques and procedures for estimating thermal conductivity of thin, compressible thermal interface material (TIM). The TIM performance is affected by many factors and thus TIM should be evaluated under specified application conditions. In compact packaging of electronic equipment the chip is interfaced with a thin heat spreader. As the package is made thinner, the coupling between heat flow through TIM and that in the heat spreader becomes stronger. Thus, a TIM characterization system for considering the heat spreader effect is proposed and demonstrated in detail in this paper. The TIM test apparatus developed based on ASTM D-5470 standard for thermal interface resistance measurement of high performance TIM, including the precise measurement of changes in in-situ materials thickness. Thermal impedances are measured and compared for different directions of heat dissipation. The measurement of the TIM under the practical conditions can thus be used as the thermal criteria for the TIM selection.

Temperature and Sound Noise Control for LED lamp (LED조명의 온도 및 소음 제어)

  • Yoon, Jong-Su;Choi, Hyeung-Sik;Shin, Hee-Young;Lim, Tae-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권8호
    • /
    • pp.1078-1084
    • /
    • 2011
  • In this paper, a temperature control for LED(Light Emitting Diode) lamp using a cooling fan is studied. An efficient temperature control scheme for the LED lamp using the fan wind at the lowest sound noise is studied. Also, for minimization study of sound noise and temperature control of an LED lamp, a sequential control algorithm using the cooling fan at the lowest sound noise is presented. For the study, after measurement of the minimum sound noise of the fan and related temperature of the LED lamp through tests, experiments on temperature control of the LED lamp using the fan was performed.

On-Board Black Body Thermal Design and On-Orbit Thermal Analysis for Non-Uniformity Correction of Space Imagers (영상센서의 비균일 출력특성 교정용 흑체의 열설계 및 궤도 열해석)

  • Oh, Hyun-Ung;Shin, So-Min;Hong, Ju-Sung;Lee, Min-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제38권10호
    • /
    • pp.1020-1025
    • /
    • 2010
  • On-board black body is used for radiation temperature calibration of spaceborne radiometers and imaging systems. The thermal design of black body proposed in this study is basically composed of heaters to heat-up the black body from low to high temperature during the calibration, heat pipe to transfer residual heat on the black body just after calibration to radiator on the S/C and heaters on the radiator to keep the certain temperature range of the black body during non-calibration. In the present work, the effectiveness of thermal design of on-board black body has been investigated by on-orbit thermal analysis.

Effect of operating conditions on adhesion strength of Al/Al2O3 produced by surface activated bonding

  • Jang, Gyu-Bong;Do, Won-Min;Im, Seong-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.165.1-165.1
    • /
    • 2016
  • 표면활성화 접합은 이종 소재의 표면을 제어하여 직접 접합하는 기술이다. 본 연구에서는 표면활성화 접합을 이용하여 고 방열특성의 LED용 히트스프레더(heat spreader)를 제작하기 위하여 $Al-Al_2O_3$ 복합소재를 제조하였다. LED 제품의 히트스프레더는 LED에서 발생하는 열을 한 곳으로 집중하는 것을 막아 열을 분산하는 금속판을 의미한다. 최근의 LED 제품은 고출력화에 의한 발열량의 급증으로 MCL(Metal Clad Laminate)를 이용하여 LED 칩에서 발생된 열을 외부로 배출하는 모듈구조를 나타내는 경우가 대다수이다. LED에서 열이 증가하게 되면 LED의 효율이 감소하고, 수명이 줄어드는 현상을 보이기 때문에 방열특성은 매우 중요하다. 따라서 고출력화되어 LED 칩에서 발생되는 열을 제어하는 기술이 이슈화 되고 있다. 기존의 히트스프레더 구조는 통상적으로 Al/절연층(폴리머)/Al으로 폴리머의 열전도율이 1W/mk로 고출력화에 의해 급증하는 LED의 발열량을 충분히 해소시키기 어렵다. 본 연구에서는 급증하는 LED의 방열량을 해소시키기 위해서 기존의 Al/폴리머/Al의 구조를 $Al/Al_2O_3/Al$의 구조로 개발하기 위해서 HV-SCDB 기술을 이용한 $Al-Al_2O_3$ 복합소재 제조 및 접합특성에 관하여 연구하였다.

  • PDF

Performance of heat sinks for LED luminaires in office buildings - Focused on the variation of air flow rate in duct - (사무소건물의 LED조명기구 방열장치의 성능 분석 연구 - 덕트 내 유량변화 중심으로 -)

  • Park, Ji-Woo;Ahn, Byung-Lip;Kim, Jong-Hun;Jeong, Hak-Geun;Jang, Cheol-Yong;Song, Kyoo-dong
    • KIEAE Journal
    • /
    • 제14권6호
    • /
    • pp.81-86
    • /
    • 2014
  • In recent years, many researchers have considered the building energy consumption reduction accordingly to deal with abnormal climate changes and greenhouse gas reduction. However, the lighting energy use ratio has increased in spite of the development of the high efficiency lighting device. Therefore, the study aims to produce the LED lighting applications for the effective lighting heat removal by using the heat characteristics of LED lighting and analyzing the heat removal effect. In order to increase radiant heat efficiency, the heat pipe and heat sink was attached on PCB as LED lighting applications. Experiment was conducted to verify the temperature and air velocity of inside duct: thermocouples, anemometer. The heat removal effect of LED lighting applications was measured by observing the temperature of the lighting applications and the change of air velocity in duct. The experiment shows that the temperature change in the duct according to air velocity was $0.9{\sim}5.8^{\circ}C$. It is also concluded that heat removal was calculated from 33 to 81W.

Experimental Investigation of Forced Air Cooled Plate Fin Heat Sinks (강제 공냉 평판형 핀 방열판에 대한 실험적 고찰)

  • Kim, Tae-Yeop
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • 제24권6호
    • /
    • pp.428-437
    • /
    • 2019
  • Analytical thermal models based on average convection heat transfer are frequently used for the design and selection of forced air-cooled plate fin heat sinks. In this paper, a convection heat transfer model within a ±10% margin of error was presented through experimental investigation. Five types of heat sinks with inlet widths of 1.7-6.8 mm were tested at 50-160 W heat sources to derive and verify the model. Causes of error between the experiment and analytical thermal model were analyzed and listed to design the heat sink. Using proposed method and the lists to be considered in the paper, a quick and accurate heat sink design of the power-conversion system is expected.