• 제목/요약/키워드: 방습

검색결과 71건 처리시간 0.021초

방습 효과가 우수한 환경친화적인 방습지(2보) -방습 도공지의 재생 특성- (Environmentally Friendly Paper with Superior Moisture -Proof Properties(II) -Recyclable properties of moisture-proof paper-)

  • 이명구;유재국
    • 펄프종이기술
    • /
    • 제35권1호
    • /
    • pp.13-18
    • /
    • 2003
  • This study was done in an effort to evaluate the possibility of recyclability of moisture-proof paper. Because it is difficult to recycle laminated moisture-proof paper, a mixture of styrene-butadiene latex(SB latex) and wax emulsion was used as moisture-proof paper chemicals. A bar coater was applied to make moisture-proof paper and the coated weight was 17 g/$m^2$. The mixing ratios of SB latex to wax emulsion were 85 : 15, 87 : 13, and 90 : 10, respectively. It was observed that the moisture-proof paper treated with SB latex and wax emulsion at the appropriate ratio could be recycled effectively. The moisture-proof paper was similar to base paper in degree of pulping, and there was no significant difference in dispersion between moisture-proof paper and base paper. Most of wax particle which caused the spots during drying process could be removed by flotation process. Tensile strength and tear strength of handsheets made of both moisture-proof paper and base paper after pulping was measured to examine the fiber bonding and no significant difference in mechanical properties was observed.

폐닥나무의 입도제어에 따른 흡·방습 특성 분석 (Analysis for Water Vapour Adsorption and Desorption Performance of Waste Paper-Mulberry according to Particle Size Control)

  • 조기식;김태연;서성관;이오규;추용식
    • 자원리싸이클링
    • /
    • 제29권2호
    • /
    • pp.8-17
    • /
    • 2020
  • 본 연구에서는 분쇄 가공된 폐닥나무의 친환경 조습 제품에 대한 적용 가능성을 확인하기 위해 인피섬유와 폐닥나무 분쇄 펠렛의 흡·방습 성능 측정을 진행하였다. 폐닥나무 분말은 710-355㎛, 355-100㎛, 100-45㎛ 및 45㎛ 미만의 입도별로 분류하여 사용하였다. 분말의 비표면적은 입자 크기가 710㎛부터 45㎛미만으로 감소할수록 1.02㎡/g에서 1.35㎡/g로 증가하는 경향을 나타내었다. 흡·방습량은 355-100㎛, 710-355㎛, 100-45㎛, 45㎛미만 및 인피섬유의 순으로 감소하였으며, 각각 141.1g/㎡, 147.1g/㎡, 135.7g/㎡, 129g/㎡의 흡습 및 117.2g/㎡, 123.6g/㎡, 110.2g/㎡, 93.3g/㎡의 방습 성능이 확인되었다. 폐닥나무 분말의 흡습 및 방습 성능은 닥나무 인피섬유 보다 우수하였으며, 이는 펠렛 내부 기공의 분포와 섬유 손상에 기인한 것으로 사료되었다.

벼, 현미, 백미 및 왕겨의 방습평형함수율 (Desorption Equilibrium Moisture Content of Rough Rice , Brown Rice, White Rice and Rice Hull)

  • 금동혁;김훈;조영길
    • Journal of Biosystems Engineering
    • /
    • 제25권1호
    • /
    • pp.47-54
    • /
    • 2000
  • This study was performed to determine desorption equilibrium moisture contents of rough rice, brown rice, white rice and rice hull grown in Korea. EMC values were measured by static method using saturated salt solutions at three temperature levels of 2$0^{\circ}C$, 3$0^{\circ}C$ and 4$0^{\circ}C$ and eight relative humidity levels in the range from 11.2% to 85.0%. The measured EMC values were fitted to modified Henderson, Chung-Pfost , and modified Oswin models by using nonlinear regression analysis. The results of comparing root mean square errors for three models showed that modified Henderson and CHung -Pfost models could serve as good models, and that modified Oswin model could not be available for rough rice, brown rice, white rice and rice hull.

  • PDF

목질 보드류의 표면 열변화에 따른 접촉각(방습) 특성 (Moistureproof Characteristics of Woodboard Types with Surface Thermal Changes)

  • 신상호;임남기
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 가을 학술논문 발표대회
    • /
    • pp.161-162
    • /
    • 2020
  • In this study, as part of securing related data, water droplets were dropped on the upper part of the wooden board for flooring in an environment such as floor heating, and the degree of absorption according to the surface temperature change was tested. The test results showed that the contact angle of the surface was low (25℃→40℃) or the droplet was absorbed into the small plate and disappeared. The contact angle of the OSB and MDF was decreased within 30 minutes, but the surface water droplet was maintained longer than the plywood. This is because the surface is coated with hydrophobicity unlike the plywood, but moisture absorption in the cross section after the second processing will not be prevented and it will lead to defect occurrence problem.

  • PDF