• Title/Summary/Keyword: 방사

Search Result 17,177, Processing Time 0.041 seconds

Adsorptive Removal of Radionuclide Cs+ in Water using Acid Active Clay (산활성 점토를 이용한 수중의 방사성 핵종 Cs+ 흡착 제거)

  • Lee, Jae Sung;Kim, Su Jin;Kim, Ye Eun;Kim, Seong Yun;Kim, Eun;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.2
    • /
    • pp.78-85
    • /
    • 2022
  • Natural white clay was treated with 6 M of H2SO4 and heated at 80℃ for 6 h under mechanical stirring and the resulting acid active clay was used as an adsorbent for the removal of Cs+ in water. The physicochemical changes of natural white clay and acid active clay were observed by X-ray Fluorescence Spectrometry (XRF), BET Surface Area Analyser and Energy Dispersive X-line Spectrometer (EDX). While activating natural white clay with acid, the part of Al2O3, CaO, MgO, SO3 and Fe2O3 was dissolved firstly from the crystal lattice, which bring about the increase in the specific surface area and the pore volume as well as active sites. The specific surface area and the pore volume of acid active clay were roughly twice as high compared with natural white clay. The adsorption of Cs+ on acid active clay was increased rapidly within 1 min and reached equilibrium at 60 min. At 25 mg L- of Cs+ concentration, 96.88% of adsorption capacity was accomplished by acid active clay. The adsorption data of Cs+ were fitted to the adsorption isotherm and kinetic models. It was found that Langmuir isotherm was described well to the adsorption behavior of Cs+ on acid active clay rather than Freundlich isotherm. For adsorption Cs+ on acid active clay, the Langmuir isotherm coefficients, Q, was found to be 10.52 mg g-1. In acid active clay/water system, the pseudo-second-order kinetic model was more suitable for adsorption of Cs+ than the pseudo-first-order kinetic model owing to the higher correlation coefficient R2 and the more proximity value of the experimental value qe,exp and the calculated value qe,cal. The overall results of study showed that acid active clay could be used as an efficient adsorbent for the removal of Cs+ from water.

Study on dose comparison using X-Jaw split in VMAT treatment planning for left breast cancer including supraclavicular lymph nodes. (쇄골 상부 림프절을 포함하는 왼쪽 유방암의 VMAT 치료계획시 X-Jaw split을 이용한 선량비교에 관한 연구)

  • Kim, Hak Jun;Lee, Yang Hoon;Min, Jae Soon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.33
    • /
    • pp.137-144
    • /
    • 2021
  • Purpose : The usability of X-Jaw split VMAT was evaluated by comparative analysis of the dose distribution between the treatment plan divided by X-Jaw and Full field VMAT treatment plan in left breast cancer treatment including supraclavicular lymph nodes. Materials and Methods : 10 patients with left breast cancer, including supraclavicular lymph nodes, were simulated using vacuum cushion, and 2 Full field Arc VMAT and 4 X-Jaw split Arc VMAT were planned The treatment plan was designed to include more than 95% of the Planning Target Volume (PTV) and to be minimally irradiated in the surrounding Organ at risk (OAR). Dose analysis of PTV and OAR was performed through dose volume histogram (DVH). Results : The Full field VMAT treatment plan and the X-Jaw split VMAT treatment plan of 10 patients were expressed as average values and compared. The difference between the two treatment plans was not large, with a Conformity index (CI) of 1.05±0.04, 1.04±0.03, and a Homogeneity index (HI) of 1.07±0.008, 1.07±0.009. For OAR, V5 in the left lung is 56.1±6.50%, 50.4±6.30%, and V20 is 20.0±4.15%, 13.52±3.61%. Compared to Full field VMAT, V5 decreased by 10.0% V20 by 32.6% in X-Jaw split VMAT. The V30 of the heart is 3.68±1.85%, 2.23±1.52%, and the Mean dose is 8.93±1.65 Gy, 7.67±1.52 Gy. In the X-Jaw split VMAT, V30 decreased by 39.3% and the Mean dose decreased by 14.1%. The left lung and heart, which are normal tissues, were found to have a statistical significance of that p-value is less than 0.05. Conclusion : In the case of left breast cancer treatment, which includes Supraclavicular lymph nodes with a large PTV volume and a length of X Jaw of 15 cm or more, the X-Jaw split VMAT shows improved dose distribution, which can reduce radiation dose of OAR such as lungs and heart, while maintaining similar PTV coverage with HI and CI equivalent to Full field VMAT. It is thought to be effective in reducing radiation complications.

Early Failure of Cortical-Bone Screw Fixation in the Lumbar Spinal Stenosis (요추부 협착에서의 피질골 궤도 나사못 고정의 초기 실패 사례에 대한 고찰)

  • Kwon, Ji-Won;Kim, Jin-Gyu;Ha, Joong-Won;Moon, Seong-Hwan;Lee, Hwan-Mo;Park, Yung
    • Journal of the Korean Orthopaedic Association
    • /
    • v.55 no.5
    • /
    • pp.405-410
    • /
    • 2020
  • Purpose: Pedicle screw insertion has been traditionally used as a surgical treatment for degenerative lumbar spine disease. As an alternative, the cortical-bone trajectory screw allows less invasive posterior lumbar fixation and excellent mechanical stability, as reported in several biomechanical studies. This study evaluated the clinical and radiological results of a case of early failure of cortical-bone screw fixation in posterior fixation and union after posterior decompression. Materials and Methods: This study examined 311 patients who underwent surgical treatment from 2013 to 2018 using cortical orbital screws as an alternative to traditional pedicle screw fixation for degenerative spinal stenosis and anterior spine dislocation of the lumbar spine. Early fixation failure after surgery was defined as fixation failure, such as loosening, pull-out, and breakage of the screw on computed tomography (CT) and radiographs at a follow-up of six months. Results: Early fixation failure occurred in 46 out of 311 cases (14.8%), screw loosening in 46 cases (14.8%), pull-out in 12 cases (3.9%), and breakage in four cases (1.3%). An analysis of the site where the fixation failure occurred revealed the following, L1 in seven cases (15.2%), L2 in three cases (6.5%), L3 in four cases (8.7%), L4 in four cases (8.7%), L5 in four cases (8.7%), and S1 in 24 cases (52.2%). Among the distal cortical bone screws, fixation failures such as loosening, pull-out, and breakage occurred mainly in the S1 screws. Conclusion: Cortical-bone trajectory screw fixation may be an alternative with comparable clinical outcomes or fewer complications compared to conventional pedicle screw fixation. On the other hand, in case with osteoporosis and no anterior support structure particularly at L5-S1 fusion sites were observed to have result of premature fixation failures such as relaxation, pull-out, and breakage.

Anterolateral Ligament of the Knee: Anatomy, Biomechanics, Techniques, and Clinical Outcome (슬관절 전외측인대의 해부학, 생역학, 수술법 및 임상적 결과)

  • Kim, Seong Hwan;Lee, Tae-Hyub;Park, Yong-Beom
    • Journal of the Korean Orthopaedic Association
    • /
    • v.55 no.4
    • /
    • pp.281-293
    • /
    • 2020
  • An anterior cruciate ligament (ACL) reconstruction is one of the most frequent surgical procedures in the knee joint, but despite the better understanding of anatomy and biomechanics, surgical reconstruction procedures still fail to restore rotational stability in 7%-16% of patients. Hence, many studies have attempted to identify the factors for rotational laxity, including the anterolateral ligament (ALL), but still showed controversies. Descriptions of the ALL anatomy are also confused by overlapping nomenclature, but it is usually known as a distinctive fiber running in an anteroinferior and oblique direction from the lateral epicondyle of the femur to the proximal anterolateral tibia, between the fibular head and Gerdy's tubercle. The importance of the ALL as a secondary restraint in the knee has been emphasized for successful ACL reconstructions that can restore rotational stability, but there is still some controversy. Some studies reported that the ALL could be a restraint to the tibial rotation, but not to anterior tibial translation. On the other hand, some studies reported that the role of ALL in rotational stability would be limited as a secondary structure because it bears loads only beyond normal biomechanical motion. The diagnosis of an ALL injury can be performed by a physical examination, radiology examination, and magnetic resonance imaging, but it should be assessed using a multimodal approach. Recently, ALL was considered one of the anterolateral complex structures, as well as the Kaplan fiber in the iliotibial band. Many studies have introduced many indications and treatment options, but there is still some debate. The treatment methods are introduced mainly as ALL reconstructions or lateral extra-articular tenodesis, which can achieve additional benefit to the knee stability. Further studies will be needed on the indications and proper surgical methods of ALL treatment.

Clinical Results of Lateral-Posterior Internal Fixation for the Treatment of Scapular Body Fractures (견갑골 체부 골절에서 외측 후방 금속판 고정술의 치료 결과)

  • Lee, Yoon-Min;Yeo, Joo-Dong;Song, Seok-Whan
    • Journal of the Korean Orthopaedic Association
    • /
    • v.55 no.1
    • /
    • pp.46-53
    • /
    • 2020
  • Purpose: Scapular body fractures have generally been treated with non-surgical methods. This study reports the clinical and radiological outcomes after lateral-posterior internal fixation for treating displaced scapular body fractures. Materials and Methods: From March 2007 to May 2017, out of 40 patients who underwent internal fixation for scapular fractures, 13 cases of lateral plate fixation of a scapular body fracture were reviewed retrospectively. Preoperative and postoperative displacement, angulation and glenopolar angle (GPA) were measured. The range of shoulder motion, visual analogue scale (VAS), and disabilities of the arm, shoulder, and hand (DASH), and Constant score were assessed at the last follow-up. Results: The mean follow-up period was 17.7 months (range, 6-45 months). The mean preoperative GPA was 23.3°±3.96° (range, 17.8°-28.1°) and the postoperative GPA was 31.1°±4.75° (range, 22.5°-40.1°). Injury to the suprascapular nerve, nonunion, fracture redisplacement, metallic failure, or infection did not occur. At the last follow-up, the mean range of motion was 150.5°±19.3° in forward flexion, 146.6°±2.34° in lateral abduction, 66.6°±19.1° in external rotation, and 61.6°±18.9° in internal rotation. The VAS, DASH, and Constant scores were 1.7±1.3, 6.2±2.4, and 86±7.9 points, respectively. Conclusion: A scapular body fracture with severe displacement, angulation and marked decreased GPA can be stabilized by lateralposterior plate fixation using the appropriate surgical technique with good functional and radiological results.

The Validation of a Commercial Testosterone RIA Test Kits (Testosterone RIA 검사 kit 별 유효성 비교평가)

  • Ryu, Hwa-jin;Shin, Seon-yeong;Cho, Seong-uk
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.26 no.1
    • /
    • pp.38-41
    • /
    • 2022
  • Purpose Testosterone is a steroid hormone synthesized by the Leydig cells of the testes in men, and by the adrenal cortex and ovaries in women. Testosterone production is regulated by luteinzing hormone secreted by the anterior pituitary gland. In this experiment, the effectiveness of testosterone radioimmunoassay (RIA) kits produced by three companies was evaluated and compared in case the production of testosterone kits was stopped or supply problems occurred. Materials and Methods In October 2021, samples were collected from the patients (n=49) who requested the testosterone RIA test. The experiment was conducted by dividing the patient's sample into low concentration (1.0 ng/mL or less), medium concentration (2.0-4.0 ng/mL) and high concentration (6.0 ng/mL or more). The Testosterone RIA test compared and evaluated the validity of Company A kits used in this hospital and those of Company B and C used in other hospitals. The precision, sensitivity, recovery, linearity and correlation were evaluated for each kit. The testosterone RIA test was carried out in accordance with the insert kit manual for each manufacturer. Results As a result of measuring the precision of the intra assay, the Coefficient of Variation (CV) value of the company A kit was high at 11.4% only in the low concentration sample, and in the case of the company B and C kits, the CV value was less than 10% at low, medium, and high concentrations. In the inter-assay precision measurement, the CV value was less than 15% in both A and C kits, but in the case of the B kit, the CV value exceeded 15% at low and medium concentrations. Sensitivity was 0.13 ng/mL for company A, 0.01 ng/mL for company B, and 0.01 ng/mL for company C, and the linearity of all three kits showed excellent linearity. In the case of recovery rate, all of the A, B, and C company kits showed results that were out of 90-110%. In the case of correlation test, when compared with the company A kit currently use in here, the correlation coefficient (R2) value for the company B kit was 0.9508, and for the company C kit was 0.9352 Conclusion As a result, there was a slight difference in precision at the low concentration sample. The correlation test showed an excellent correlation coefficient. However, it was difficult to secure samples of various concentrations because there were not many tests of testosterone requested at this hospital. So, additional experiments should be carried out by acquiring samples of various concentrations on each laboratory later.

Occurrence of Uranium-238 and Rn-222 in Groundwater and Its Relationship with Helium Isotope (지하수 내 우라늄-238 및 라돈-222 산출과 헬륨 동위원소와의 상관성 연구)

  • Jeong, Chan Ho;Lee, Yu Jin;Lee, Yong Cheon;Hong, Jin Woo;Kim, Cheon Hwan;Nagao, Keisuke;Kim, Young-Seog;Kang, Tae-Seob
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.659-669
    • /
    • 2021
  • The purpose of this study is to elucidate the relationship between occurrence of natural radioactive materials such as 238U and 222Rn and original mixing ratio of helium isotope of groundwater from various geology, and to suggest the underground aquifer environment from helium original mixing data. 9 groundwater samples were collected from five study areas, and 238U, Rn-222 and helium isotope were analyzed. A high 238U content of the range of 218~477 ㎍ /L in the groundwater occurs in the twomica granite. 4He air-crust mixing ratio and the Rn-222 content show a rough relation, that is, Rn-222 content increases according to the increase of 4He crust mixing ratio. Because of helium and radon are an inert gas, their behavior in underground environment is assumed as an analogous. The 238U content and He isotope in groundwater does not show any distinct correlation. The groundwater can be classified as three groups (air, air-crust mixing, crust-mantle mixing origin) on the diagram of 3He/4He vs 4He/20Ne, which is composed of original mixing line from air-crust-mantle end members. This original mixing of helium can provide the information of underground aquifer characteristic such as the connection with surface environment or isolation condition from air environment.

GMI Microwave Sea Surface Temperature Validation and Environmental Factors in the Seas around Korean Peninsula (한반도 주변해 GMI 마이크로파 해수면온도 검증과 환경적 요인)

  • Kim, Hee-Young;Park, Kyung-Ae;Kwak, Byeong-Dae;Joo, Hui-Tae;Lee, Joon-Soo
    • Journal of the Korean earth science society
    • /
    • v.43 no.5
    • /
    • pp.604-617
    • /
    • 2022
  • Sea surface temperature (SST) is a key variable that can be used to understand ocean-atmosphere phenomena and predict climate change. Satellite microwave remote sensing enables the measurement of SST despite the presence of clouds and precipitation in the sensor path. Therefore, considering the high utilization of microwave SST, it is necessary to continuously verify its accuracy and analyze its error characteristics. In this study, the validation of the microwave global precision measurement (GPM)/GPM microwave imager (GMI) SST around the Northwest Pacific and Korean Peninsula was conducted using surface drifter temperature data for approximately eight years from March 2014 to December 2021. The GMI SST showed a bias of 0.09K and an average root mean square error of 0.97K compared to the actual SST, which was slightly higher than that observed in previous studies. In addition, the error characteristics of the GMI SST were related to environmental factors, such as latitude, distance from the coast, sea wind, and water vapor volume. Errors tended to increase in areas close to coastal areas within 300 km of land and in high-latitude areas. In addition, relatively high errors were found in the range of weak wind speeds (<6 m s-1) during the day and strong wind speeds (>10 m s-1) at night. Atmospheric water vapor contributed to high SST differences in very low ranges of <30 mm and in very high ranges of >60 mm. These errors are consistent with those observed in previous studies, in which GMI data were less accurate at low SST and were estimated to be due to differences in land and ocean radiation, wind-induced changes in sea surface roughness, and absorption of water vapor into the microwave atmosphere. These results suggest that the characteristics of the GMI SST differences should be clarified for more extensive use of microwave satellite SST calculations in the seas around the Korean Peninsula, including a part of the Northwest Pacific.

Estimation of High Resolution Sea Surface Salinity Using Multi Satellite Data and Machine Learning (다종 위성자료와 기계학습을 이용한 고해상도 표층 염분 추정)

  • Sung, Taejun;Sim, Seongmun;Jang, Eunna;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.747-763
    • /
    • 2022
  • Ocean salinity affects ocean circulation on a global scale and low salinity water around coastal areas often has an impact on aquaculture and fisheries. Microwave satellite sensors (e.g., Soil Moisture Active Passive [SMAP]) have provided sea surface salinity (SSS) based on the dielectric characteristics of water associated with SSS and sea surface temperature (SST). In this study, a Light Gradient Boosting Machine (LGBM)-based model for generating high resolution SSS from Geostationary Ocean Color Imager (GOCI) data was proposed, having machine learning-based improved SMAP SSS by Jang et al. (2022) as reference data (SMAP SSS (Jang)). Three schemes with different input variables were tested, and scheme 3 with all variables including Multi-scale Ultra-high Resolution SST yielded the best performance (coefficient of determination = 0.60, root mean square error = 0.91 psu). The proposed LGBM-based GOCI SSS had a similar spatiotemporal pattern with SMAP SSS (Jang), with much higher spatial resolution even in coastal areas, where SMAP SSS (Jang) was not available. In addition, when tested for the great flood occurred in Southern China in August 2020, GOCI SSS well simulated the spatial and temporal change of Changjiang Diluted Water. This research provided a potential that optical satellite data can be used to generate high resolution SSS associated with the improved microwave-based SSS especially in coastal areas.

Origin and Reservoir Types of Abiotic Native Hydrogen in Continental Lithosphere (대륙 암석권에서 무기 자연 수소의 성인과 부존 형태)

  • Kim, Hyeong Soo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.313-331
    • /
    • 2022
  • Natural or native abiotic molecular hydrogen (H2) is a major component in natural gas, however yet its importance in the global energy sector's usage as clean and renewable energy is underestimated. Here we review the occurrence and geological settings of native hydrogen to demonstrate the much widesprease H2 occurrence in nature by comparison with previous estimations. Three main types of source rocks have been identified: (1) ultramafic rocks; (2) cratons comprising iron (Fe2+)-rich rocks; and (3) uranium-rich rocks. The rocks are closely associated with Precambrian crystalline basement and serpentinized ultramafic rocks from ophiolite and peridotite either at mid-ocean ridges or within continental margin(Zgonnik, 2020). Inorganic geological processes producing H2 in the source rocks include (a) the reduction of water during the oxidation of Fe2+ in minerals (e.g., olivine), (b) water splitting due to radioactive decay, (c) degassing of magma at low pressure, and (d) the reaction of water with surface radicals during mechanical breaking (e.g., fault) of silicate rocks. Native hydrogen are found as a free gas (51%), fluid inclusions in various rock types (29%), and dissolved gas in underground water (20%) (Zgonnik, 2020). Although research on H2 has not yet been carried out in Korea, the potential H2 reservoirs in the Gyeongsang Basin are highly probable based on geological and geochemical characteristics including occurrence of ultramafic rocks, inter-bedded basaltic layers and iron-copper deposits within thick sedimentary basin and igneous activities at an active continental margin during the Permian-Paleogene. The native hydrogen is expected to be clean and renewable energy source in the near future. Therefore it is clear that the origin and exploration of the native hydrogen, not yet been revealed by an integrated studies of rock-fluid interaction studies, are a field of special interest, regardless of the presence of economic native hydrogen reservoirs in Korea.