• 제목/요약/키워드: 방사형 기저 함수 신경회로망

검색결과 24건 처리시간 0.06초

다중목적 입자군집 최적화 알고리즘을 이용한 방사형 기저 함수 기반 다항식 신경회로망 구조 설계 (Structural Design of Radial Basis Function-based Polynomial Neural Networks by Using Multiobjective Particle Swarm Optimization)

  • 김욱동;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1966-1967
    • /
    • 2011
  • 본 연구에서는 방사형 기저 함수를 이용한 다항식 신경회로망(Polynomial Neural Network) 분류기를 제안한다. 제안된 모델은 PNN을 기본 구조로 하여 1층의 다항식 노드 대신에 다중 출력 형태의 방사형 기저 함수를 사용하여 각 노드가 방사형 기저 함수 신경회로망(RBFNN)을 형성한다. RBFNN의 은닉층에는 fuzzy 클러스터링을 사용하여 입력 데이터의 특성을 고려한 적합도를 사용하였다. 제안된 분류기는 입력변수의 수와 다항식 차수가 모델의 성능을 결정함으로 최적화가 필요하며 본 논문에서는 Multiobjective Particle Swarm Optimization(MoPSO)을 사용하여 모델의 성능뿐만 아니라 모델의 복잡성 및 해석력을 고려하였다. 패턴 분류기로써의 제안된 모델을 평가하기 위해 Iris 데이터를 이용하였다.

  • PDF

주성분 분석법과 선형판별 분석법을 이용한 최적화된 방사형 기저 함수 신경회로망 분류기의 설계 (Design of Optimized Radial Basis Function Neural Networks Classifier with the Aid of Principal Component Analysis and Linear Discriminant Analysis)

  • 김욱동;오성권
    • 한국지능시스템학회논문지
    • /
    • 제22권6호
    • /
    • pp.735-740
    • /
    • 2012
  • 본 연구에서는 주성분 분석법 및 선형 판별 분석법을 이용한 다항식 방사형 기저 함수 신경회로망 분류기의 설계 방법론을 소개한다. 주성분 분석법과 선형판별 분석법을 사용하여 주어진 데이터의 정보 손실을 최소화한 특징데이터를 생성하고 이를 다항식 방사형 기저함수 신경회로망의 입력데이터로 사용한다. 방사형 기저 함수 신경회로망의 은닉층은 FCM 클러스터링 알고리즘으로 구성되며 연결가중치는 1차 선형식을 사용하였다. 최적의 분류기 설계를 위해서 최근에 제안된 Artificial Bee Colony(ABC) 최적화 알고리즘을 사용하여 구조 및 파라미터를 동조하였다. ABC 알고리즘을 통해 주성분 분석법과 선형판별 분석법의 고유벡터의 수 및 FCM 클러스터링 알고리즘의 퍼지화 계수등의 파라미터를 동조한다. 제안된 분류기는 대표적인 Machine Learning(ML) 데이터를 사용하여 성능을 평가하며 기존 분류기와 성능을 비교한다.

차분 진화알고리즘 기반 다중 출력 방사형 기저 함수 다항식 신경 회로망 구조 설계 (Structural Design of Differential Evolution-based Multi Output Radial Basis Funtion Polynomial Neural Networks)

  • 김욱동;마창민;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1964-1965
    • /
    • 2011
  • 본 연구에서는 패턴분류를 위해 기존의 방사형 기저 함수 신경회로망(Radial Basis Funtion Neural Network)과 다항식 신경회로망(Polynomial Neural Network)을 결합한 다중 출력 방사형 기저 함수다항식 신경회로망 (Multi Output Radial Basis Funtion Polynomial Neural Network)의 분류기를 제안한다. 제안된 모델은 PNN을 기본 구조로 하여 1층에 기존의 다항식 노드 대신 다중 출력 형태의 RBFNN을 적용 한다. RBFNN의 은닉층에는 기존의 활성함수가 아닌 fuzzy 클러스터링을 사용하여 입력 데이터의 특성을 고려한 적합도를 사용하였다. PNN은 입력변수의 수와 다항식 차수가 모델의 성능을 결정함으로 최적화가 필요하며 본 논문에서는 Differential Evolution(DE)을 사용하여 모델의 구조 및 파라미터를 최적화시켜 모델의 성능을 향상시켰다. 패턴분류기로써의 제안된 모델을 평가하기 위해 pima 데이터를 이용하였다.

  • PDF

HOG 특징을 이용한 다항식 방사형 기저함수 신경회로망 기반 숫자 인식 방법의 설계 (Design of Digits Recognition Method Based on pRBFNNs Using HOG Features)

  • 김봉연;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.1365-1366
    • /
    • 2015
  • 본 논문에서는 HOG 특징을 이용한 다항식 방사형 기저함수 신경회로망 기반 숫자 인식 시스템의 설계를 제안한다. 제안한 숫자 인식 시스템은 HOG 특징을 이용하여 숫자를 입력 데이터로 사용하기 위해 특징을 계산한다. 다항식 방사형 기저 함수 신경회로망은 고차원 데이터의 입-출력 형태를 갖는 클래스를 분류하는데 용이하며, 활성함수의 중심점 및 분포상수는 Fuzzy C-Means(FCM) 알고리즘에 의해 초기 값을 설정한다. 또한 제안한 분류기의 최적화를 위해 Particle Swarm Optimization(PSO)를 사용하여 최적화된 분류기의 성능을 비교한다. 숫자 인식을 위하여 공인 데이터베이스인 MNIST handwritten digit database를 사용하여 분류기의 성능을 평가하고 분석한다.

  • PDF

투영신경회로망의 훈련을 위한 진화학습기법 (Evolutionary Learning Algorithm fo r Projection Neural NEtworks)

  • 황민웅;최진영
    • 한국지능시스템학회논문지
    • /
    • 제7권4호
    • /
    • pp.74-81
    • /
    • 1997
  • 본 논문에서는 시그모이드 함수와 방사형 기저 함수 모두를 생성시킬 수 있는 특별한 은닉층 노드를 갖는 투영신경회로망에 대하여 알아롭고 그것을 훈련시키기 위한 진화 학습 기법을 제시한다. 제시된 기법은 신경회로망의 매개변수와 연결 가충치뿐만 아니라, 어떤 목적함수를 나타내기 위한 최적의 은닉층 노드개수 또한 구조 최적화를 위한 진화연산자를 통해 찾아낸다. 각각의 은닉층 노드의 역할은 진화를 거듭하면서 방사형 기저 함수를 나타낼지 시그모이드 함수를 나타낼지 결정된다. 알고리즘을 구현하기 위해서 투영신경회로망은 연결 고리 리스트 자료구조로 나타내었다. 모의 실험에서 기존으 오차역전파에 의한 학습과 구조 성장 방식보다 적은 노드로 투영신경회로망을 훈련시킬 수 있음을 볼수 있다.

  • PDF

빅 데이터 처리를 위한 증분형 FCM 기반 RBF Neural Networks 패턴 분류기 설계 (Design of Incremental FCM-based RBF Neural Networks Pattern Classifier for Processing Big Data)

  • 이승철;오성권;노석범
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.1343-1344
    • /
    • 2015
  • 본 연구에서는 증분형 FCM(Incremental Fuzzy C-Means: Incremental FCM) 클러스터링 알고리즘을 기반으로 방사형 기저함수 신경회로망(Radial Basis Function Neural Networks: RBFNN) 패턴 분류기를 설계한다. 방사형 기저함수 신경회로망은 조건부에서 가우시안 함수 또는 FCM을 사용하여 적합도를 구하였지만, 제안된 분류기에서는 빅 데이터간의 적합도를 구하기 위해 증분형 FCM을 사용한다. 또한, 빅 데이터를 학습하기 위해 결론부에서 재귀최소자승법(Recursive Least Square Estimation: RLSE)을 사용하여 다항식 계수를 추정한다. 마지막으로 추론부에서는 증분형 FCM에서 구한 적합도와 재귀최소자승법으로 구한 다항식을 이용하여 최종 출력을 구한다.

  • PDF

차분 진화 알고리즘 기반 방사형 기저 함수 신경회로망 분류기의 최적화 방법 (Optimization Method of Differential Evolution-based Radial Basis Function Neural Networks)

  • 마창민;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1962-1963
    • /
    • 2011
  • 본 연구에서는 패턴분류를 위해 최적화된 방사형 기저 함수 신경회로망(Radial Basis Function Neural Networks) 분류기를 제안한다. RBFNN은 입력층, 은닉층, 출력층의 3층 구조로 되어 있으며 Multi Dimension, Predictive ability, Robustness한 특징이 있다. RBFNN의 은닉층에는 기존의 활성함수가 아닌 Fuzzy C-means 클러스터링 알고리즘을 사용하여 입력 데이터의 특성을 고려한 적합도를 사용하였다. RBFNN은 은닉층의 노드수와 FCM 클러스터링의 퍼지화 계수, 연결가중치의 다항식 타입이 모델의 성능의 향상에 영향을 미치기 때문에 최적화가 필요하며 본 논문에서는 Differential Evolution(DE) 알고리즘을 사용하여 모델의 구조 및 파라미터를 최적화시켜 모델의 성능을 향상시켰다. 제안된 모델을 평가하기 위해 패턴분류에 많이 사용되는 Iris 데이터와 Wine 데이터를 이용하였다.

  • PDF

영상처리 기법을 통한 pRBFNN 패턴 분류기 기반 개선된 지문인식 시스템 설계 (Design of Fingerprints Identification Based on pRBFNN Using Image Processing Techniques)

  • 배종수;오성권;김현기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.1363-1364
    • /
    • 2015
  • 본 논문은 지문을 이용하여 방사형 기저함수 신경회로망(RBFNN: Radial Basis Function Neural Network)을 기반으로 지문을 식별하고 확인할 수 있는 방법을 제시한다. 지문 데이터로는 공인데이터인 FVC2002의 지문 데이터를 사용하였다. 지문 이미지의 개선을 위해 여러 단계의 전처리를 한 후 특징점을 추출하여 데이터베이스를 구축하였다. 이렇게 구축된 데이터베이스를 방사형 기저함수 신경회로망을 통해 학습을 시키고 지문의 패턴을 분류하여 지문의 대상자와 일치하는 패턴의 지문들을 선정한다. 선정된 지문들과 입력된 지문의 특징점을 이용하여 지문의 대상자를 식별한다.

  • PDF

CT 전처리 기법을 이용하여 조명변화에 강인한 얼굴인식 시스템 설계 (Design of Robust Face Recognition System with Illumination Variation Realized with the Aid of CT Preprocessing Method)

  • 진용탁;오성권;김현기
    • 한국지능시스템학회논문지
    • /
    • 제25권1호
    • /
    • pp.91-96
    • /
    • 2015
  • 본 연구는 조명변화에 강인한 CT 전처리 기법 기반 개선된 얼굴인식 시스템을 소개한다. 전처리 알고리즘으로 CT알고리즘은 조명이 없는 환경에서도 얼굴의 지역적인 특징만을 추출한다. 얼굴의 지역적인 특징 추출을 가능하게 해준다. 처리된 데이터는 $(2D)^2$ 기반 대표적인 차원축소 알고리즘인 PCA를 사용하여 특징을 추출하였다. 전처리 알고리즘을 통한 특징 데이터는 제안한 방사형 기저함수 신경회로망의 입력으로 사용하였다. 방사형 기저함수 신경회로망의 은닉층은 FCM으로 구성하였고, 연결가중치는 1차 선형식을 사용하였다. 또한 ABC 알고리즘을 이용하여 제안된 분류기의 파라미터, 즉 입력의 수, 퍼지 클러스터링의 퍼지화 계수를 최적화 한다. 본 연구는 제안된 시스템의 성능 평가를 위해 Yale Face database B와 CMU PIE database로 실험하였다.

강수/비강수 사례 분류를 위한 RBFNN 기반 패턴분류기 설계 (Design of RBFNN-Based Pattern Classifier for the Classification of Precipitation/Non-Precipitation Cases)

  • 최우용;오성권;김현기
    • 한국지능시스템학회논문지
    • /
    • 제24권6호
    • /
    • pp.586-591
    • /
    • 2014
  • 본 연구에서는 인공 벌 군집(ABC: Artificial Bee Colony) 알고리즘을 이용하여 주어진 레이더 데이터로부터 강수 사례와 비강수 사례를 분류하는 방사형 기저함수 신경회로망(RBFNNs: Radial Basis Function Neural Networks)분류기를 소개한다. 기상청에서 사용하고 있는 기상 레이더 데이터의 특성 분석을 통해 입력 데이터를 구성한다. 방사형 기저함수 신경회로망의 조건부에서는 Fuzzy C-Means 클러스터링 방법을 이용하여 적합도를 계산하고, 결론부에서는 최소자승법(LSE: Least Square Method)을 이용하여 다항식 계수를 추정한다. 추론부에서 최종출력 값은 퍼지 추론 방법을 이용하여 얻어진다. 제안된 분류기의 성능은 기상청에서 사용하는 QC와 CZ 데이터를 고려하여 비교 및 분석되어진다.