• Title/Summary/Keyword: 방사선 품질관리

Search Result 100, Processing Time 0.021 seconds

The Results of the Survey about Present Situation of Quality Assurance for Radiotherapy Machine of Korea (한국의 방사선치료 기기 품질관리 현황에 관한 설문 결과)

  • Jeong, Seonghoon;Yoon, Myonggeun;Lee, Hyunho
    • Progress in Medical Physics
    • /
    • v.26 no.3
    • /
    • pp.185-191
    • /
    • 2015
  • As radiation therapy is one of three major cancer treatment methods, many cancer patients get radiation therapy. Because of the invisible and scattering characteristics of radiation, it is impossible to identify the quality and the amount of radiation and secondary cancer could be induced by scattered radiation. Because of advanced technique of radiation therapy and the reasons mentioned above, quality assurance of radiotherapy machine should be performed completely. International organizations such as International Atomic Energy Agency (IAEA), American Association of Physicists in Medicine (AAPM) suggest report of quality assurance to recommend united method of radiotherapy machine quality assurance. Domestic society of medical physics, however, is too small to make such a report, domestic hospitals selectively choose some of contents in global suggestions. As there are no suggestions for domestic hospitals and global suggestions are being updated, we did a survey about quality assurance for radiotherapy machine. The questionnaire is composed of possession of radiotherapy machine, items performed for quality assurance and manpower, etc. 37 of 72 hospitals answered to survey. These results could be used for making domestic standard quality assurance procedure.

Suggestion for Comprehensive Quality Assurance of Medical Linear Accelerator in Korea (국내 선형가속기의 포괄적인 품질관리체계에 대한 제언)

  • Choi, Sang Hyoun;Park, Dong-wook;Kim, Kum Bae;Kim, Dong Wook;Lee, Jaiki;Shin, Dong Oh
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.294-303
    • /
    • 2015
  • American Association of Physicists in Medicine (AAPM) Published Task Group 40 report which includes recommendations for comprehensive quality assurance (QA) for medical linear accelerator in 1994 and TG-142 report for recommendation for QA which includes procedures such as intensity-modulated radiotherapy (IMRT), stereotactic radiosurgery (SRS) and stereotactic body radiation therapy (SBRT) in 2010. Recently, Nuclear Safety and Security Commission (NSSC) published NSSC notification no. 2015-005 which is "Technological standards for radiation safety of medical field". This notification regulate to establish guidelines for quality assurance which includes organization and job, devices, methods/frequency/tolerances and action levels for QA, and to implement quality assurance in each medical institution. For this reason, all of these facilities using medical machine for patient treatment should establish items, frequencies and tolerances for proper QA for medical treatment machine that use the techniques such as non-IMRT, IMRT and SRS/SBRT, and perform quality assurance. For domestic, however, there are lack of guidelines and reports of Korean Society of Medical Physicists (KSMP) for reference to establish systematic QA report in medical institutes. This report, therefore, suggested comprehensive quality assurance system such as the scheme of quality assurance system, which is considered for domestic conditions, based the notification of NSSC and AAPM TG-142 reports. We think that the quality assurance system suggested for medical linear accelerator also help establishing QA system for another high-precision radiation treatment machines.

Development of Novalis Quality Assurance Protocol for Radiosurgery (방사선수술을 위한 노발리스 품질관리 프로토콜 개발)

  • Lee, Dong-Joon;Lee, Kyung-Nam;Lee, Suk;Lee, Sang-Hoon;Kim, Dae-Hong
    • Progress in Medical Physics
    • /
    • v.21 no.1
    • /
    • pp.99-112
    • /
    • 2010
  • In Republic of Korea, there are many Quality Assurance protocol for general radiation treatment machine such as linac. However, Quality Assurance protocol for radiosurgery treatment system is not ready perfectly. One of the radiation treatment machine for radiosurgery, novalis system needs to suitable Quality Assurance protocol for using it right way during radiation treatment and maintaining suitable accuracy for daily, weekly, monthly and annually periods. Therefore, in this article, we develop Quality Assurance protocol for novalis system. We collected and analysed domestic and foreign novalis Quality Assurance protocol. After that, we selected essential QA items and each tolerance range for developing proper QA protocol, and we made anatomical phantom for execution of selected QA items and evaluation of overall state of QA, and then, we use this measured value as a reference. Quality Assurance items are consisted of Mechanical accuracy QA part and Radiation delivery QA part. Mechanical accuracy QA part is comprised of radiation generation machine part, assistive devices part and multi-leaf collimator part. Radiation delivery QA part is divided into radiation isocenter accuracy and dosimetric evaluation. After that, developed novalis QA tables are made by using these QA items. These novalis QA tables would be used to good standard in order to maintain apt accuracy for radiosurgery in daily, weekly, monthly and annually periods.

Use of Statistical Process Control for Quality Assurance in Radiation Therapy (방사선치료에서의 품질보증을 위한 통계적공정관리의 활용)

  • Cheong, Kwang-Ho
    • Progress in Medical Physics
    • /
    • v.26 no.2
    • /
    • pp.59-71
    • /
    • 2015
  • The goal of quality assurance (QA) is to minimize systematic errors in order to maintain the quality of a certain process. Statistical process control (SPC) has been utilized for QA in radiation therapy field since 2005 and is changing QA paradigm. Its purpose is to maintain a process within the given control limits while monitoring of error trends such as variation or dispersion. SPC can be applied to all QA aspects of radiotherapy; however, a medical physicist should have enough knowledge about the application of SPC to QC/QA procedures. In this paper, the author introduce a concept of SPC and review some previously reported studies those used SPC for QA in radiation therapy.

A Status Report on Dual Energy X-ray Absorptiometry Quality Control in Korea (이중에너지 방사선흡수 골밀도 장치의 품질관리 현황)

  • Kim, Jung-Su;Rho, Young-Hoon;Lee, In-Ju;Kim, Sung-Su;Kim, Kyoung-Ah;Kim, Jung-Min
    • Journal of radiological science and technology
    • /
    • v.39 no.4
    • /
    • pp.527-534
    • /
    • 2016
  • Dual-energy X-ray absorptiometry (DEXA) is the most widely used technical instrument for evaluating bone mineral content (BMC) and density (BMD) in patients of all ages. In 2016, DEXA devices operating is 5617 in Korea. In this study we investigated the quality of management practices survey for DEXA equipment and we analyzed it. We got a survey response rate of 12.6%. Accurate bone densitometry test is used data for estimation a patient's risk of fracture. However, improper bone densitometry will increase the possibility of causing a false positive. Therefore. it is essential to use the proper aids accurate bone densitomenty to be performed, and the quality control of the device to reduce the error factor of the tester through the training to reduce error for the device and the attitude.

Set Up and Operation for Medical Radiation Exposure Quality Control System of Health Promotion Center (건강검진센터의 의료방사선 피폭 품질관리 시스템 구축 운영 경험 보고)

  • Kim, Jung-Su;Jung, Hae-Kyoung;Kim, Jung-Min
    • Journal of radiological science and technology
    • /
    • v.39 no.1
    • /
    • pp.13-17
    • /
    • 2016
  • In this study, standard model of medical radiation dosage quality control system will be suggested and the useful of this system in clinical field will be reviewed. Radiation dosage information of modalities are gathered from digital imaging and communications in medicine(DICOM) standard data(such as DICOM dose SR and DICOM header) and stored in database. One CT scan, two digital radiography modalities and two mammography modalities in one health promotion center in Seoul are used to derive clinical data for one month. After 1 months research with 703 CT scans, the study shows CT $357.9mGy{\cdot}cm$ in abdomen and pelvic CT, $572.4mGy{\cdot}cm$ in brain without CT, $55.9mGy{\cdot}cm$ in calcium score/heart CT, screening CT at $54mGy{\cdot}cm$ in chest screening CT(low dose screening CT scan), $284.99mGy{\cdot}cm$ in C-spine CT and $341.85mGy{\cdot}cm$ in L-spine CT as health promotion center reference level of each exam. And with 1955 digital radiography cases, it shows $274.0mGy{\cdot}cm2$ and for mammography 6.09 mGy is shown based on 536 cases. The use of medical radiation shall comply with the principles of justification and optimization. This quality management of medical radiation exposure must be performed in order to follow the principle. And the procedure to reduce the radiation exposure of patients and staff can be achieved through this. The results of this study can be applied as a useful tool to perform the quality control of medical radiation exposure.

Acceptance Test and Quality Control of Radiotherapy Treatment Simulator (의료용 모의치료기의 품질관리에 관한 연구)

  • 신동호;박성용;신동오;최진호;김유현;권수일
    • Progress in Medical Physics
    • /
    • v.13 no.2
    • /
    • pp.90-97
    • /
    • 2002
  • The simulator which has a identical geometry with radiotherapy equipments, is a essential equipment to accomplish optimized radiotherapy plan through simulation by using diagnostic low energy X-ray. A Radiotherapy simulator has a combined technology from the therapeutic and diagnostic radiology and needs a periodical test for mechanical and optical properties, X-ray generator, image intensifier of simulator to keep the proper maintenance and radiation safety. Hence, tests were done and classified as i) mechanical and optical parameter for the gantry, collimator, and couch ii) key performance of the X-ray generator such as a kVp, mAs, and timer iii) performance of the image intensifier such as a resolution and contrast for three kinds of simulator, common use in clinic. The above result of tests will be applied to the acceptance test and periodical quality assurance procedure.

  • PDF