• Title/Summary/Keyword: 방사선 작업종사자

Search Result 151, Processing Time 0.027 seconds

Preliminary Study on the Internal Dosimetry Program for Carbon-14 at Korean CANDU Reactors (중수로원전에서 발생하는 $^{14}C$에 대한 내부피폭 선량평가 프로그램에 관한 예비 조사)

  • Kong T.Y.;Kim H.C.;Park G.;Hang D.W.;Lee G.J.;Lee S.K.;Park S.C.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11a
    • /
    • pp.317-320
    • /
    • 2005
  • More strict radioactive regulations are applied to Korean nuclear power plants (NPPs) since ICRP-60 recommendation for radiation protection and has been enforced since 2003. In particular. carbon-14 and tritium concentrations are significantly higher at CANDU reactors compared to PWR reactors and this increases the risk of internal radiation exposure to workers at CANDU NPPs. Thus, it is necessary to estimate the exact amount of internal radiation exposure to workers fur radiological protection at CANDU reactors. In this paper, the current dosimetry method for carbon-14 is analyzed for the establishment of internal dosimetry for carbon-14 at domestic NPPs.

  • PDF

A Study on the Evaluation of Radiological Effects on Workers from Air Contamination in Radioactive Waste Treatment Facilities (방사성 액체폐기물 처리 시설 내 공기오염에 의한 작업종사자 방사선학적 영향 평가에 대한 연구)

  • Min-Ho Lee;Woo-Beom Ha;Sang-Heon Lee;Jong-Soon Song
    • Journal of Radiation Industry
    • /
    • v.18 no.2
    • /
    • pp.147-153
    • /
    • 2024
  • Radioactive liquid waste generated during operation and overhaul is collected and reused through the radioactive liquid waste treatment system and continuous monitoring system in the nuclear power plant or discharged to the outside if it satisfies the limit within the control and monitoring. However, there are concerns about boric acid management, which controls the power output of nuclear power plants in radioactive liquid waste. Due to the behavior of boric acid, it is difficult to remove it in the existing liquid radwaste system, and the concentration of boric acid water discharged tends to be higher than the natural state of 5 ppm, so additional facilities should be considered. Therefore, this study aims to evaluate the radiological effects of radioactive waste treatment facilities that are under development and use them as a basis for managing worker exposure and evaluating the safety of facilities in the future.

개인선량계의 국제상호비교연구

  • 윤석철;김장열;하정우
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05b
    • /
    • pp.875-881
    • /
    • 1995
  • 원자력 연구소는 국제원자력기구(IAEA/RCA) 주관하에 1990년부터 1993년 사이 3차에 걸쳐 실시한 개인선량계에 대한 국제상호비교에 참여하였다. 국제 상호비교에 참여하여 사용된 개인선량계는 방사선작업종사자에 대한 외부방사선으로부터 피폭관리를 위하여 기 사용중인 Taedyne Isotope 사의 PB-3타입의 열형광선량계이며 선량계판독용으로 Tdedyne 9150자동판독기를 사용하였다. 본 논문에는 3차에 걸쳐 국제상호비교결과를 요약하였으며 저 에너지의 엑스선에 경우를 제외하고 모든 조사방사선에 대해 0.78에서 1.07사이에 상대비율로 결과를 나타내었다. 또한 미국기준 ANSI Nl 3.11에 의해 성능을 시험한 결과 모든 조사방사선장에 대해서 허용기준 0.5이하를 나타내었다.

  • PDF

An Analysis of Exposure Dose on Hands of Radiation Workers using a Monte Carlo Simulation in Nuclear Medicine (몬테카를로 모의 모사를 이용한 핵의학과 방사선작업종사자의 손에 대한 피폭선량 분석)

  • Jang, Dong-Gun;Kang, Sesik;Kim, Junghoon;Kim, Changsoo
    • Journal of radiological science and technology
    • /
    • v.38 no.4
    • /
    • pp.477-482
    • /
    • 2015
  • Workers in nuclear medicine have performed various tasks such as production, distribution, preparation and injection of radioisotope. This process could cause high radiation exposure to wokers' hand. The purpose of this study was to investigate shielding effect for r-rays of 140 and 511 keV by using Monte-carlo simulation. As a result, it was effective, regardless of lead thickness for radiation shielding in 140 keV r-ray. However, it was effective in shielding material with thickness of more than only 1.1 mm in 511keV r-ray. And also it doesn't effective in less than 1.1 mm due to secondary scatter ray and exposure dose was rather increased. Consequently, energy of radionuclide and thickness of shielding materials should be considered to reduce radiation exposure.

Analysis of Tritium Concentration in Working Environment and Internal Exposure Dose Assessment for Radiation Workers (방사성 부품 작업환경의 삼중수소 농도 분석 및 작업종사자 내부피폭선량 평가)

  • Gyoungjun Choi;Changwoo Kang
    • Journal of Radiation Industry
    • /
    • v.17 no.2
    • /
    • pp.135-141
    • /
    • 2023
  • Tritium is used in various types of parts such as luminous bodies. These parts are maintained for inspection and replacement at a facility licensed to use radioactive isotopes. This study analyzed the concentration of tritium in working facilities to supplement and develop the safety management system for the maintenance environment of parts containing tritium. In addition, the internal exposure dose was evaluated to analyze the effects of leaked tritium when continuously exposed to workers. As a result of evaluating the internal exposure dose for workers for 30 days, the maximum was 9.70 μSv and the average was 1.45 μSv. Based on the results of this study, the internal radiation exposure safety of workers handling parts containing tritium was confirmed, and additional protective measures to prevent unnecessary exposure to tritium were suggested. This study is expected to contribute to supplementing and developing the radiation safety management system.

2005년도 "하나로" 방사성폐기물 처리방법 및 저감화 대책

  • 이성효;임경환;허순옥;이문한;이형섭;설창우;황승렬
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11a
    • /
    • pp.109-110
    • /
    • 2005
  • 하나로에서 발생하는 방사성폐기물은 물리적 특성에 따라 고체, 액체 및 기체 방사성폐기물로 분류된다. 고체 방사성폐기물은 방문객 및 종사자들의 원자로실에 출입하여 업무를 수행하는 과정에서 발생하며, 액체 방사성폐기물은 계통의 누설, 보수작업, 실험장비 설치 등의 원자로 운영과정에서 주로 발생한다. 본 논문에서는 2005년도 하나로 시설의 방사선 관리 구역인 원자로실에서 발생된 고체, 액체 방사성폐기물의 발생량과 이들의 저감화를 위하여 취한 조치를 기술하였다.

  • PDF

Trends and Issues in Metabolism and Dosimetry for Tritium Intake (삼중수소 피폭방사선량 평가의 경향과 이슈에 대한 고찰)

  • Kim, Hee-Geun;Kong, Tae-Young;Jeong, Woo-Tae
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.2
    • /
    • pp.99-106
    • /
    • 2011
  • Tritium is the one of the most important radionuclide for workers in nuclear power plants (NPPs) and the public, from the dosimetric point of view. Humans are likely to have internal radiation exposure by tritium inhalation. Radiation exposure by tritium accounts for approximately 7% and 60~90% of the total radiation exposure of NPP workers and the public during normal operation, respectively. Thus, many researches have been conducted to estimate the internal dose by tritium precisely in the world. In terms of tritium dosimetry, this paper provides the current status of research for tritium metabolism and dosimetry.

TLD dose variation of Magnetic Resonance Imaging Equipment (자기공명영상장비에서 열형광선량계의 선량 변화)

  • Je, Jaeyong;Kang, Eunbo
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.6
    • /
    • pp.473-476
    • /
    • 2012
  • The PET-MRI which has been installed and being managed recently uses both magnetic field and radiation. Most radiation workers wear a thermoluminescenct dosimeter (TLD) as a personal radiation dosimeter, and the TLD is affected both by a magnetic field and radiation. In this research, the same amount of X-ray was applied to 36 TLDs, and the changes in the dose of the 32 TLDs exposed to magnetic field at the location where its intensity of the magnetic resonance imaging (MRI) was about 5000 Gauss for eight hours with one-hour unit and that of the four TLDs not exposed to magnetic field were compared and checked. The measurement result showed that exposure dose of the TLD attached to the MRI changed irregularly depending on the amount of exposure time. Therefore, the TLD whose amount of changes little in the environment of a MRI is demanded to be developed.

Comparison on the Dosimetry of OSLD and PLD Used in Nuclear Medicine (형광유리 선량계와 광자극 발광선량계를 이용한 핵의학과 선량 측정비교)

  • Park, Jeong-kyu;Son, Sang-Joon;Park, Myeong-Hwan
    • Journal of radiological science and technology
    • /
    • v.42 no.1
    • /
    • pp.47-51
    • /
    • 2019
  • This study was conducted from July 1 to September 30, 2018 using Optically Stimulated Luminescence Dosimeter(OSLD) and photoluminescent glass dosimeter(PLD) to measure the 3-month exposure dose and the cumulative dose in the active working area of the nuclear medicine worker Respectively. As a result, the cumulative dose for three months in the worker and work area was measured as 1.97 mSv and 2.02 mSv in the PLD. The mean surface dose and the mean depth dose of the OSLD were measured to be 2.04 mSv. The difference in the total surface dose measured by the PLD and the OSLD was 0.66mSv and the total mean surface dose was 0.07mSv. The difference between the total depth dose and the total depth dose was 0.1mSv and 0.02mSv, respectively. It was found that the dose value of the OSLD was higher than that of the PLD. In addition, it was found that the maximum difference of 0.01mSv was observed between the PLD and the OSLD of the worker. For the dose measurement of the two dosimetry systems, there was no significant difference between the PLD and the OSLD in the surface dose of 0.239 (p>0.05). Also, the significance of PLD and OSLD in the deep dose was 0.109, which was not statistically significant (p>0.05).

The Consideration of nuclear medicine technologist's occupational dose from patient who are undergoing 18F-FDG Whole body PET/CT : Aspect of specific characteristic of patient and contact time with patient (18F-FDG Whole Body PET/CT 수검자의 거리별 선량 변화에 따른 방사선 작업종사자의 유효선량 고찰: 환자 고유특성 및 응대시간 측면)

  • Kim, Sunghwan;Ryu, Jaekwang;Ko, Hyunsoo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.22 no.1
    • /
    • pp.67-75
    • /
    • 2018
  • Purpose The purpose of this study is to investigate and analyze the external dose rates of $^{18}F-FDG$ Whole Body PET/CT patients by distance, and to identify the main factors that contribute to the reduction of radiation dose by checking the cumulative doses of nuclear medicine technologist(NMT). Materials and Methods After completion of the $^{18}F-FDG$ Whole Body PET/CT scan($75.4{\pm}3.3min$), the external dose rates of 106 patients were measured at a distance of 0, 10, 30, 50, and 100 cm from the chest. Gender, age, BMI(Body Mass Index), fasting time, diabetes mellitus, radiopharmaceutical injection information, creatine value were collected to analyze individual factors that could affect external dose rates from a patient's perspective. From the perspective of NMT, personal pocket dosimeters were worn on the chest to record accumulated dose of NMT who performed the injection task($T_1$, $T_2$ and $T_3$) and scan task($T_4$, $T_5$ and $T_6$). In addition, patient contact time with NMT was measured and analyzed. Results External dose rates from the patient for each distance were calculated as $246.9{\pm}37.6$, $129.9{\pm}16.7$, $61.2{\pm}9.1$, $34.4{\pm}5.9$, and $13.1{\pm}2.4{\mu}Sv/hr$ respectively. On the patient's aspect, there was a significant difference in the proximity of gender, BMI, Injection dose and creatine value, but the difference decreased as the distance increased. In case of dialysis patient, external dose rates for each distance were exceptionally higher than other patients. On the NMT aspect, the doses received from patients were 0.70, 1.09, $0.55{\mu}Sv/person$ for performing the injection task($T_1$, $T_2$, and $T_3$), and were 1.25, 0.82, $1.23{\mu}Sv/person$ for performing the scan task($T_4$, $T_5$, $T_6$). Conclusion we found that maintaining proper distance with patient and reducing contact time with patient had a significant effect on accumulated doses. Considering those points, efforts such as sufficient water intake and encourage of urination, maintaining the proper distance between the NMT and the patient(at least 100 cm), and reducing the contact time should be done for reducing dose rates not only patient but also NMT.