• Title/Summary/Keyword: 방사선 선량 분포

Search Result 726, Processing Time 0.024 seconds

Evaluation of Metal Artifact Reduction for Orthopedic Implants (O-MAR) on Radiotherapy Treatment Planning (방사선 치료 계획 시 O-MAR (Metal Artifact Reduction for Orthopedic Implants) 적용의 유용성 평가)

  • Won, Huisu;Hong, Joowan;Kim, Sunyoung;Choi, Jaehyock;Cho, Jaehwan;Yang, Hanjoon;Lee, Jin;Lee, Sunyeob;Park, Cheolsoo
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.5
    • /
    • pp.217-223
    • /
    • 2014
  • The aim of this study is evaluation of dose distribution on radiation therapy planning system with the CT image of high-density material inserted phantom. Gammex 467 Tissue Characterization Phantom is used to acquire an image similar to the human tissues and insert a Titanium to generate metal artifact. The acquired images were reconstructed with Metal Artifact Reduction for Orthopedic Implants (O-MAR). By using the treatment planning system, the volume was analyzed and dose distribution was extracted. Photon dose distribution in linear accelerator was measured by the $MapCHECK^{TM}$ and compared with planned and measured dose distributions. In result of the comparative analysis, when artifact is generated by Titanium, The volume applied O-MAR was increased 6.8% to BR-12 Breast and 40.2% to LV 1 Liver. After O-MAR was used, Dose distribution was higher 1.4 to 1.6% than before. Consequently, The artifact caused by metal objects should be removed if possible, and after that used in the radiotherapy treatment plan can be considered to reduce errors.

Discrepancies between Calculated and Delivered Dose Distributions of Respiratory Gated IMRT Fields according to the Target Motion Ranges for Lung and Liver Cancer Patients (호흡연동방사선치료시 폐암과 간암환자의 병소 움직임 크기에 따른 선량분포 차이 분석)

  • Kim, Youngkuk;Lim, Sangwook;Choi, Ji Hoon;Ma, Sun Young;Jeung, Tae Sig;Ro, Tae Ik
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.242-247
    • /
    • 2014
  • To see the discrepancies between the calculated and the delivered dose distribution of IMRT fields for respiratory-induced moving target according to the motion ranges. Four IMRT plans in which there are five fields, for lung and liver patients were selected. The gantry angles were set to $0^{\circ}$ for every field and recalculated using TPS (Eclipse Ver 8.1, Varian Medical Systems, Inc., USA). The ion-chamber array detector (MatriXX, IBA Dosimetry, Germany) was placed on the respiratory simulating platform and made it to move with ranges of 1, 2, and 3 cm, respectively. The IMRT fields were delivered to the detector with 30~70% gating windows. The comparison was performed by gamma index with tolerance of 3 mm and 3%. The average pass rate was 98.63% when there's no motion. When 1.0, 2.0, 3.0 cm motion ranges were simulated, the average pass rate were 98.59%, 97.82%, and 95.84%, respectively. Therefore, ITV margin should be increased or gating windows should be decreased for targets with large motion ranges.

Calculation of Shielding Rate and Dose Distribution of Space of L-Block-Type Protective Equipment for Radioactive Fluorine using the Monte Carlo Method (몬테칼로 방법을 이용한 방사성 불소에 대한 L-블럭형 방호장비의 차폐율 및 공간의 선량분포 계산)

  • Han, Dong-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.6
    • /
    • pp.813-819
    • /
    • 2021
  • In this study, the shielding rate of L-block-type shielding equipment used for radiation protection when radioactive fluorine is injected into the human body and the dose distribution of the space in the injection room were calculated using the Monte Carlo method. The shielding rate of the body and window parts of the L-block-type shielding equipment was 99.99%. The dose distribution calculated at a distance of 1 m was relatively high at 135°, 45°, 225°, 315°, and 180° of the XZ plane, and was calculated to be very low at 0°, 90°, and 270°. In the YZ plane, it was relatively high at 135°, 180°, and 225°, and was calculated very low at the remaining angles. The AZ and BZ planes also showed similar results to the YZ plane. In addition, it was confirmed that the shielding rate was the best in the range of 225° to 315° through the dose distribution in the horizontal direction of the source and the 45° direction above the source. These results can be used as basic data necessary for radiation protection of radiation workers.

Quality Assurance on Dose Distribution of Ir-192 Line Source (Ir-192 선 선원의 선량분포에 관한 품질보증)

  • Kim, Jong-Eon
    • Journal of radiological science and technology
    • /
    • v.30 no.1
    • /
    • pp.33-38
    • /
    • 2007
  • The propose of this study is a verification of the correct calculation of the dose around source and the prescription dose of Ir-192 source in the plato treatment planning system. The source and orthogonal coordinates for lateral direction and those for the anterior posterior direction were drawn on a A4 paper and then input into the system. The prescription dose was prescribed to two points with radius 1 cm in the direction of polar angle $90^{\circ} and $270^{\circ} from the center of the source. The doses of prescription point and dose points acquired from the treatment planning system were compared with those from manual calculation using the geometry function formalism derived by Paul King et al. In this analysis, the doses of prescription point were exactly consistent with each other and those of dose points were obtained within the error point of 1.85%. And the system of accuracy was evaluated within 2% of tolerance error. Therefore, this manual dose calculation used for the geometry function formalism is considered to be useful in clinics due to its convenience and high quality assurance.

  • PDF

Organ Dose Assessment of Nuclear Medicine Practitioners Using L-Block Shielding Device for Handling Diagnostic Radioisotopes (진단용 방사성동위원소 취급 시 L-block 차폐기구 사용에 따른 핵의학 종사자의 장기 선량평가)

  • Kang, Se-Sik;Cho, Yong-In;Kim, Jung-Hoon
    • Journal of radiological science and technology
    • /
    • v.40 no.1
    • /
    • pp.49-55
    • /
    • 2017
  • In the case of nuclear medicine practitioners in medical institutions, a wide range of exposure dose to individual workers can be found, depending on the type of source, the amount of radioactivity, and the use of shielding devices in handling radioactive isotopes. In this regard, this study evaluated the organ dose on practitioners as well as the dose reduction effect of the L-block shielding device in handling the diagnostic radiation source through the simulation based on the Monte Carlo method. As a result, the distribution of organ dose was found to be higher as the position of the radiation source was closer to the handling position of a practitioner, and the effective dose distribution was different according to the ICRP tissue weight. Furthermore, the dose reduction effect according to the L-block thickness tended to decrease, which showed the exponential distribution, as the shielding thickness increased. The dose reduction effect according to each radiation source showed a low shielding effect in proportion to the emitted gamma ray energy level.