• Title/Summary/Keyword: 방사선 관계종사자

Search Result 62, Processing Time 0.02 seconds

Polygonal Model Analysis on Occupational Exposure Record of Radiation Workers by Work Field (업종별 방사선작업종사자 피폭 기록 다각형 모델 분석 연구)

  • Je-Wan Park;Ji-Young Han;Yong-Min Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.2
    • /
    • pp.277-284
    • /
    • 2023
  • Since the radiological risk is different depending on the working environment, protection measures and policies must be developed through analysis of the field area environment. Evaluating the characteristics of the field area that uses radiation should be conducted through comparative analysis with other industries, not just the numerical value of the field area. In this study, evaluation factors were derived from exposure records by the department to compare radiation occupational exposure records by sector. And then, we developed a polygonal model for comparative analysis and applied them to eight work fields through ten evaluation factors. Based on the occupational exposure record in 2020, a polygonal model was applied to compare and evaluate the characteristics of the radiation work area. Through this, the usefulness of the polygonal model was confirmed, and protection policy measures for the industry were proposed.

Chromosome Aberration in Peripheral Lymphocyte of Radiation Workers in Hospital (병원내 방사선작업종사자들의 염색체이상빈도)

  • Yi, Chun-Ja;Ha, Sung-Whan;Jung, Hae-Won
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.4
    • /
    • pp.227-235
    • /
    • 1997
  • Cytogenetic studies were performed in peripheral blood lymphocytes from hospital workers occupationally exposed to low doses of radiation (0.30 - 40.07mSv). The workers were divided into three groups according to their job area : 18 diagnostic radiology, 17 therapeutic radiology, and 16 nuclear medicine. The control group consisted of 49 non-radiation workers with no history of exposure to radiation. A higher percentage of cells with aberration(1.275%) was observed in the workers compared to the controls(0.677%) and the difference was statistically significant(p<0.001). The frequency of chromosomal aberration was $0.706{\times}10^{-2}$/cell in the exposed and $0.344{\times}10^{-2}$/cell in the control(p<0.05). Chromosomal exchange frequency was $0.083{\times}10^{-2}$/cell in the control vs $0.245{\times}10^{-2}$/cell in the workers. There was no evidence of significant increase of chromosome aberration related to age or to the duration of employment. The frequency of chromosomal exchange in workers of nuclear medicine was $0.313{\times}10^{-2}$/cell, which was significantly higher than in the control($0.083{\times}10^{-2}$/cell) or other working groups: therapeutic radiology($0.265{\times}10^{-2}$/cell), and diagnostic radiology($0.167{\times}10^{-2}$/cell). No dose-effect relation was found between chromosome aberration and total cumulative doses, recent 5 yr, recent 2 yr cumulative dose. But in case of last 1 yr cumulative dose, dose-dependant increase was observed when controls were considered(p<0.05). The radiation dose which workers have received was much lower than the maximum permissible dose, but there was a significant difference in the frequency of chromosome aberration between occupationally exposed workers and control. So, it is clear that chromosome aberration is a quite sensitive indicator of radiation exposure and it can be detected at very low dose level of occupational exposure.

  • PDF

Medical Radiation Exposure Dose of Workers in the Private Study of the Job Function (의료기관 방사선 종사자의 직무별 개인피폭선량에 관한 연구)

  • Kang, Chun-Goo;Oh, Ki-Baek;Park, Hoon-Hee
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.2
    • /
    • pp.3-12
    • /
    • 2011
  • Purpose: With increasing medical use of radiation and radioactive isotopes, there is a need to better manage the risk of radiation exposure. This study aims to grasp and analyze the individual radiation exposure situations of radiation-related workers in a medical facility by specific job, in order to instill awareness of radiation danger and to assist in safety and radiation exposure management for such workers. Materials and Methods: From January 1, 2010 December 31, 2010, medical practitioners working in the radiation is classified as a regular personal radiation dosimetry, and subsequently one year 540 people managed investigation department to target workers, dose sectional area, working period, identify the job function-related tasks for a deep dose, respectively, the annual average radiation dose were analyzed. Frequency analysis methods include ANOVA was performed. Results: Medical radiation workers in the department an annual radiation dose of Nuclear and 4.57 mSv a was highest, dose zone-specific distribution of nuclear medicine and in the 5.01~19.05 mSv in the high dose area distribution showed departmental radiation four of the annual radiation dose of Nuclear and 7.14 mSv showed the highest radiation dose. More work an average annual radiation dose according to the job function related to the synthesis of Cyclotron to 17.47 mSv work showed the highest radiation dose, Gamma camera Cinema Room 7.24 mSv, PET/CT Cinema Room service is 7.60 mSv, 2.04 mSv in order of intervention high, were analyzed. Working period, according to domain-specific average annual dose of radiation dose from 10 to 14 in oral and maxillofacial radiology practitioners as high as 1.01~3.00 mSv average dose showed the Department of Radiology, 1-4 years, 5-9 years, respectively, 1.01 workers~8.00 mSv in the range of the most high-dose region showed the distribution, nuclear medicine, and the 1-4 years, 5-9 years 3.01~19.05 mSv, respectively, workers of the highest dose showed the distribution of the area in the range of 10 to 14 years, Workers at 15-19 3.01~15.00 mSv, respectively in the range of the high-dose region were distributed. Conclusion: These results suggest that medical radiation workers working in Nuclear Medicine radiation safety management of the majority of the current were carried out in the effectiveness, depending on job characteristics has been found that many differences. However, this requires efforts to minimize radiation exposure, and systematic training for them and for reasonable radiation exposure management system is needed.

  • PDF

Reducing Radiation Exposure Dose on Operator by Using Lateral Protection in Neuro-Intervention (뇌혈관 중재적시술에 있어 측방향 차폐체를 이용한 시술자 피폭 선량 저감화 방법 연구)

  • Kim, Jongdeok;Ahn, ByeoungJu;Lee, Junhaeng
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • The bi-plane cerebrovascular angiography radiation is done the radiation exposure at the forward and lateral direction as opposed to the one of the source. So, the exposure dose of radiation workers increases further. Therefore, the medical diagnostic radiation workers as well as patients is interested to ways to reduce the dose. The exposure dose of cerebral angiography and interventional radiology must be considered the primary radiation of X-ray tube directly, scattered primary radiation between lateral tube and lateral detector and relatively small secondary scatter radiation in the walls of room. The aim of study is that the exposure dose of primary and scatter radiation reduce as much as possible to install protection device of lateral protection than common shielding of table and ceiling. As a result, the dose of fluoroscopy was reduced approximately 3.64 times the gonads, thyroid approximately 3.13 times, 4.42 times around eyes. And the dose of DSA was reduced approximately 4.98 times the gonads, thyroid approximately 3.00 times, 1.67 times around eyes. Consequently, medical practitioners can be helpful for radiation dose-exposure for the lateral protection of bi-plane cerebrovascular angiography more than the common shield method in cerebrovascular angiography and interventional radiological procedures.

A Cohort Study on Cancer Risk by Low-Dose Radiation Exposure among Radiation Workers of Nuclear Power Plants in Korea (저준위 방사선 노출의 암 유발에 관한 국내 원전종사자 코호트 연구)

  • Lim, Young-Khi;Yoo, Keun-Young
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.2
    • /
    • pp.53-63
    • /
    • 2006
  • The increased risk of cancer with exposure to low-dose radiation was estimated through longitudinal study for radiation workers at the nuclear power plants in Korea. The radiation dose data were collected from the Radiation Safety Management System(RSMS) of the Korea Hydro & Nuclear Power Co., Ltd(KHNP). The cancer risks with radiation exposure were evaluated in terms of relative mortality ratios(RMR) and relative incidence ratios(RIR) to the unexposed employees at the nuclear power plants, and of the standardized mortality ratios(SMR) and standardized incidence ratios(SIR). There were no significant increases of canters of all sites in the exposed group either in RIR[1.08, 95% confidence interval(CI) 0.74-1.58] or in RMR[1.21, CI 0.70-2.08]. Neither SIR[0.81, CI 0.28-0.96] nor SMR[0.86, CI 0.66-1.10] significantly deviated from 1.0 for cancers of all sites. The trend analysis did not identify evident dose-response relationship due to insufficient numbers of the cases. Consequently, it is concluded that increases in cancer risks in the radiation worker group exposed to low doses at the nuclear power plants in Korea are not identified at this time.

Analysis of Relationship Between Injection Dose and Exposure Dose in PET/CT Scan: Initial Study (PET/CT에서 방사성 의약품 주입량이 방사선 피폭에 미치는 영향분석: 초기연구)

  • Park, Hoon-Hee;Lyu, Kwang-Yeul
    • Journal of radiological science and technology
    • /
    • v.34 no.4
    • /
    • pp.351-357
    • /
    • 2011
  • The $^{18}F$-FDG is one of the widely used isotopes for PET/CT scans. Dose amount injected to the patient depends on the characteristics of PET/CT systems. Obviously, the technologists who contact with patients would be exposed as well. In this study, we evaluated the exposed dose of the technologist who works on the PET/CT scanner. The exposed dose were measured every month with the TLDs from 6 technologists. Each technologist is shift-worker who manages 3 different PET/CT systems(Scanner 1(S1): 0.15 mCi/kg, Scanner 2(S2): 0.17 mCi/kg, Scanner 3(S3): 0.12 mCi/kg). The average exposed doses of technologists for each PET/CT system were measured as 0.76 mSv for S1, 0.93 mSv for S2 and 0.47 mSv for S3. The maximum dose was 1.12 mSv and minimum was 0.42 mSv. The results showed that there was a correlation between exposed dose and PET/CT system(p<0.005). Less injected dose for patient occurs less exposed dose for technologist. Various studies for the low dose PET/CT system are required for not only the patient but also the technologist.

Analysis of Radiation/Radioactivity-Related Knowledge, Perception and Behaviors of Radiological Technologists (방사선사의 방사선/능에 대한 지식, 인식, 행위 분석)

  • Kim, Jung-Hoon;Ko, Seong-Jin;Kang, Se-Sik;Choi, Seok-Yoon;Kim, Chang-Soo
    • Journal of radiological science and technology
    • /
    • v.34 no.2
    • /
    • pp.123-129
    • /
    • 2011
  • This study aimed at 1) investigating the perception, knowledge and behaviors of radiological technologists on radiation defence and 2) preparing plans to reduce the unnecessary radiation dose on practician, patients and their caretakers. For data collection, a structured questionnaire was used to survey 225 radiological technologists living in downtown Busan. To analyze the collected data, SPSS/PC+ Win 13 version was used. For verification of differences between groups, one-way ANOVA was conducted. In addition, multiple regression analysis was conducted to analyze the impact of general variables (knowledge, education, age and length of service) in radiation safety management perspective. No differences were found in terms of the knowledge on radiation/radioactivity according to educational background, age and length of service. In the perspective of radiation safety management, the highest figures were found among those in their 40s and higher and those with the education of college graduation and higher. As for the correlation between radiation safety management and knowledge on radiation/radioactivity, positive correlations were found in all cases. In addition, analysis on the impact of general variables in radiation safety management perspective indicated that the perception on radiation safety management was higher as the level of knowledge on radiation/radioactivity was higher. The correct radiation/radioactivity management through practician training was necessary to reduce radiation dose on radiological technologists and patients.

A Study on the Radiation Exposure Dose of Clinical Trainees in the Department of Radiology: A Case Study at C University Hospital (방사선(학)과 임상실습생의 수시출입자 피폭선량에 대한 고찰: C 대학병원 사례 연구)

  • Joo-Ah Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.2
    • /
    • pp.249-255
    • /
    • 2023
  • In this study, radiation exposure doses were measured in the course of clinical practice of radiation workers, radiological technologists in the radiation-related worker group, and preliminary-radiological technologists who were classified as frequent visitors. Radiological technologists who worked in the radiation area of C University Hospital in Incheon for a year from January 2021 and 121 students who completed clinical practice at the same medical institution from July 1 to August 31 were the subjects of the study. The nominal risk factor based on ICRP 103 was used to evaluate the probability of side effects due to the exposure dose to the lungs, which are organs at risk of damage due to radiation exposure dose. During the clinical practice period, radiology students, who were classified as frequent visitors, had a surface dose of 0.98 ± 0.14 mSv and a deep dose of 0.93 ± 0.14 mSv. In other words, 6.7 per 1,000,000 for shallow dose and 6.4 per 1,000,000 for deep dose were found to have side effects due to exposure to the lungs. This is a value in terms of exposure dose in one year. Considering that the radiation (science) education course is 3 or 4 years, systematic management and attention to prospective radiation workers who are going to clinical practice are required, and the stochastic effect of radiation In relation to this, it is considered that it will be used as basic data for radiation safety management.

A Study on the Individual Radiation Exposure of Medical Facility Nuclear Workers by Job (의료기관 핵의학 종사자의 직무 별 개인피폭선량에 관한 연구)

  • Kang, Chun-Goo;Oh, Ki-Baek;Park, Hoon-Hee;Oh, Shin-Hyun;Park, Min-Soo;Kim, Jung-Yul;Lee, Jin-Kyu;Na, Soo-Kyung;Kim, Jae-Sam;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.9-16
    • /
    • 2010
  • Purpose: With increasing medical use of radiation and radioactive isotopes, there is a need to better manage the risk of radiation exposure. This study aims to grasp and analyze the individual radiation exposure situations of radiation-related workers in a medical facility by specific job, in order to instill awareness of radiation danger and to assist in safety and radiation exposure management for such workers. Materials and Methods: 1 January 2007 to 31 December 2009 to work in medical institutions are classified as radiation workers Nuclear personal radiation dosimeter regularly, continuously administered survey of 40 workers in three years of occupation to target, Imaging Unit beautifully, age, dose sector, job function-related tasks to identify the average annual dose for a deep dose, respectively, were analyzed. The frequency analysis and ANOVA analysis was performed. Results: Imaging Unit beautifully three years the annual dose PET and PET/CT in the work room 11.06~12.62 mSv dose showed the highest, gamma camera injection room 11.72 mSv with a higher average annual dose of occupation by the clinical technicians 8.92 mSv the highest, radiological 7.50 mSv, a nurse 2.61 mSv, the researchers 0.69 mSv, received 0.48 mSv, 0.35 mSv doctors orderly, and detail work employed the average annual dose of the PET and PET/CT work is 12.09 mSv showed the highest radiation dose, gamma camera injection work the 11.72 mSv, gamma camera imaging work 4.92 mSv, treatment and safety management and 2.98 mSv, a nurse working 2.96 mSv, management of 1.72 mSv, work image analysis 0.92 mSv, reading task 0.54 mSv, with receiving 0.51 mSv, 0.29 mSv research work, respectively. Dose sector average annual dose of the study subjects, 15 people (37.5%) than the 1 mSv dose distribution and 5 people (12.5%) and 1.01~5.0 mSv with the dose distribution was less than, 5.01~10.0 mSv in the 14 people (35.0%), 10.01~20.0 mSv in the 6 people (15.0%) of the distribution were analyzed. The average annual dose according to age in occupations that radiological workers 25~34 years old have the highest average of 8.69 mSv dose showed the average annual dose of tenure of 5~9 years in jobs radiation workers in the 9.5 mSv The average was the highest dose. Conclusion: These results suggest that medical radiation workers working in Nuclear Medicine radiation safety management of the majority of the current were carried out in the effectiveness, depending on job characteristics has been found that many differences. However, this requires efforts to minimize radiation exposure, and systematic training for them and for reasonable radiation exposure management system is needed.

  • PDF