• Title/Summary/Keyword: 방사선안전관리 교육

Search Result 68, Processing Time 0.026 seconds

Improvement Way for Mobile X-ray Examinations by Rule Revision about Safety Management of Diagnosis Radiation Occurrence System (진단용방사선발생장치의 안전관리에 관한 규칙 개정에 따른 이동형 방사선검사의 개선방안)

  • Choi, Jun-Gu;Kim, Gyeong-Su;Kim, Byeong-Gi;Ahn, Nam-Jun;Kim, Hyeong-Sun;Kim, Sang-Geon;Lim, Si-Eun
    • Journal of radiological science and technology
    • /
    • v.30 no.1
    • /
    • pp.53-59
    • /
    • 2007
  • A safety management rule of the diagnosis radiation system which opened a court 2006 February 10th was promulgated for safety of the radiation worker, patients and patients' family members. The purpose of this study is to minimize injury by radiation that can happen to patients and people around a sick ward when managing mobile X-ray system. This study analyzed sickroom environment of mobile X-ray examination and the statistical data of the Konkuk medical Information System(KIS) and the Picture Archiving Communication System(PACS). This study also investigated patient conditions, infection, relation information and related data, when the sickroom mobile X-ray examination is used. Through data analysis, many problems were expected such as restriction of space side, manpower and expense of business side, satisfaction degree decline of patient and protector of operation side. Therefore, we tried to restrict examination of multi bed sickroom, and to use treatment room in each ward to solve problem mentioned. As a result, the whole sickroom mobile X-ray examination rate decreased to near 50%, and mobile X-ray examination rate for inpatients decreased to more than 85%. This study shows that several attempts we did should be helpful for manpower, patients satisfaction and expenses. Also, they should protect patients in sickroom from unnecessary radiation exposure and could minimize inconvenience of patients and their family members from x-ray examination.

  • PDF

College-bound Curriculum Developement for Training of Atomic Industry Technician (원자력산업 중견전문인력 양성을 위한 전문대학 교육과정 개발)

  • Lyu, Kwang-Yeul;Kim, Sung-Soo;Ahn, Sung-Min
    • Journal of radiological science and technology
    • /
    • v.28 no.1
    • /
    • pp.33-44
    • /
    • 2005
  • The objective of this study is to supply the good quality of experts the radiation industries in Korea and develop the major subject matter needed in the radiation industries and the curriculum in order to execute it for the variation of fields of employment at the department of radiation in the junior college and the development of the percentage of employment. In addition, this study is to improve the level of radiation experts engaged in the industries in quality, and it is to improve the social recognition of radiation rather negative now because of the development of radiation industry. As for the core results of this research, it was to suggest the detailed choice method curriculum proper to the service fields of radiation industries, but it may be subject to change due to each college's property and the educational objectives. From the result of this research above, it may be summed up as follows. First, as for the detailed curriculum by the service field, this study was to organize two subject matters: 1. the subject matter proper to the field of using the radiation, and 2. the subject matters proper to the safety control field of radiation. Second, as for the detailed curriculum by the pattern of industries, this study was to organize the four subject matters: 1. the subject matter needed in the manufactures, 2. the subject matter needed in the nondestructive testing industries, 3. the subject matter needed in the sales agencies, and 4. the subject matter needed in the laboratories. This study was to suggest the operational model about the curriculum in order to execute these subject matters. It could be executed as two methods below. First, one method is to execute the major systems by the medical field and industrial field in the third course at the department of radiation in the junior college now. Second, the other method is to make them specialize the industrial radiation in the Advanced Course(one year course) after the graduation of junior college. To operate these curricula successively it needs to assume the deeper research and the development of materials about the subject matters related to the nuclear radiation industries hereafter. In addition, it needs to solve the security of finance like the manpower of professor, space for practice, and the educational appliances, etc. needed in the operation of subject matters. Finally, the effect and result from the development or revision of college curriculum did not come out in a short time. It will require considerable time until the undergraduates at the department in the junior college finish a set of curriculum newly developed, and graduate the university, and can get the results while they engage in their works in the industrial sites. Accordingly, all the interested parties have to anticipate the results of this research with the patience in long-standing point of view. Also, this researcher considers it as it is willing to give them the continuous interest and support.

  • PDF

Changes in Compliance Rates of Evaluation Criteria After Healthcare Accreditation: Mainly on Radiologic Technologists working at University Hospitals in Daejeon Area (의료기관인증평가 전후 인증기준 준수율의 변화 : 대전지역 대학병원의 방사선사를 중심으로)

  • Ko, Eun-Ju;Lee, Jin-Yong;Bae, Seok-Hwan;Kim, Hyun-Joo
    • Journal of radiological science and technology
    • /
    • v.36 no.4
    • /
    • pp.281-290
    • /
    • 2013
  • This study aimed to assess whether the changes in compliance rates of evaluation criteria after healthcare accreditation among radiologic technologists working at four university hospitals which had acquired healthcare accreditation in Daejeon metropolitan area. In this study, the evaluation criteria of healthcare accreditation were reclassified and reevaluated to three areas which include patient safety, staff safety, and environmental safety. Each area has eight, three, and five questions, respectively. Each compliance rate was quantitatively measured on a scale of 0 to 10 before and after in this study. The result shows that the overall compliance rates were decreased on all areas compared to the time healthcare accreditation was obtained. The compliance rate of hand hygiene was drastically reduced. To maintain the compliance rates, not only individuals but healthcare organizations should simultaneously endeavor. In particular, healthcare organizations should make an effort to provide continuous education opportunity to their workers and supervise the compliance regularly.

A Study on the Radiation Dose Managements in the Nuclear Medicine Department (핵의학과에서 방사선 피폭관리 실태에 대한 조사 연구)

  • Lim, Chang-Seon;Kim, Se-Heon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1760-1765
    • /
    • 2009
  • After administration of a radiopharmaceutical, the patient remains radioactive for hours or even days, representing a source of potential radiation exposure. Thus, including the personnel who are occupationally exposed to ionizing radiation, radiation exposure must be managed for members of the public, in particular for people accompanying patients. In this study we investigated radiation exposure dose management in the nuclear medicine departments at seven general hospitals. Two of them had no radiation safety considerations for patient transporters, sanitation workers and the like. And they all were careless of radioprotection for people accompanying patients. The average dose rate to people accompanying patients from radioactive patients just before a bone scan was 25.60 ${\mu}$Sv h-1. This is higher than 20 ${\mu}$Sv $h^{-1}$which is the annual public dose limit for temporary use. Therefore radiation dose measurement and risk assessment of patient transporters, sanitation workers and the like should be performed. And the nuclear medicine technologist should provide advices on the radiation safety to patient transporters, sanitation workers, people accompanying patients and so on. To ensure the radiation safety for people accompanying patients, it is required to restrict the patient's access to his relatives, friends and other patients or isolate patients.

Analysis of the Spatial Dose Rates during Dental Panoramic Radiography (치과 파노라마 촬영에서 공간선량률 분석)

  • Ko, Jong-Kyung;Park, Myeong-Hwan;Kim, Yongmin
    • Journal of radiological science and technology
    • /
    • v.39 no.4
    • /
    • pp.509-516
    • /
    • 2016
  • A dental panoramic radiography which usually uses low level X-rays is subject to the Nuclear Safety Act when it is installed for the purpose of education. This paper measures radiation dose and spatial dose rate by usage and thereby aims to verify the effectiveness of radiation safety equipment and provide basic information for radiation safety of radiation workers and students. After glass dosimeter (GD-352M) is attached to direct exposure area, the teeth, and indirect exposure area, the eye lens and the thyroid, on the dental radiography head phantom, these exposure areas are measured. Then, after dividing the horizontal into a $45^{\circ}$, it is separated into seven directions which all includes 30, 60, 90, 120 cm distance. The paper shows that the spatial dose rate is the highest at 30 cm and declines as the distance increases. At 30 cm, the spatial dose rate around the starting area of rotation is $3,840{\mu}Sv/h$, which is four times higher than the lowest level $778{\mu}Sv/h$. Furthermore, the spatial dose rate was $408{\mu}Sv/h$ on average at the distance of 60 cm where radiation workers can be located. From a conservative point of view, It is possible to avoid needless exposure to radiation for the purpose of education. However, in case that an unintended exposure to radiation happens within a radiation controlled area, it is still necessary to educate radiation safety. But according to the current Medical Service Act, in medical institutions, even if they are not installed, the equipment such as interlock are obliged by the Nuclear Safety Law, considering that the spatial dose rate of the educational dental panoramic radiography room is low. It seems to be excessive regulation.

Comparison of Quality Control for Chest Radiography between Special Examination and Medical Institution for Pneumoconiosis (진폐 정밀/요양기관과 요양기관의 흉부 방사선분야 정도관리 비교)

  • Lee, Won-Jeong
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.2
    • /
    • pp.322-330
    • /
    • 2011
  • To compare of quality control for chest radiography between special examination (SEP) and medical institution for pneumoconiosis (MIP). For the first time, we had visited at 33 institutions (SEP; 17 institutions, MIP; 16 institutions) to evaluate the quality control of chest radiography which is used in diagnosis of patients with pneumoconiotic complications. Image quality was rated by two experienced chest radiologists, and evaluated for radiological technique (RT), reading environment (RE) and image quality (IQ) between SEP and MIP according to the guideline published by OSHRI. Generator capacity, used duration and modality of chest radiography equipment were not signigicant difference between SEP and MIP, but there were signigicant difference in tube voltage and grid ratio used for chest radiography except to tube current and exposure time. SEP was statistically significant higher in RT (71.2 vs. 54.5, p=0.015), RE (78.8 vs. 51.5, p=0.007) to MIP, but not significant difference in IQ (64.8 vs. 59.3, p=0.180). For reliable and precisional diagnosis of patients with pneumoconiotic complications, the MIP requires the evaluation and education of quality control for improving chest radiography.

Development and Usefulness Evaluation of Virtual Reality Simulator for Education of Spatial Dose Rate in Radiation Controlled Area (방사선관리구역의 공간선량률 교육을 위한 가상현실 시뮬레이터의 개발과 유용성 평가)

  • Jeong-Min Seo
    • Journal of radiological science and technology
    • /
    • v.46 no.6
    • /
    • pp.493-499
    • /
    • 2023
  • This study developed education contents of measuring spatial dose with virtual reality simulation and applied to students majoring radiological science. The virtual reality(VR) contents with measuring spatial dose rate in the radiation controlled area was developed based on the simulation from pilot study. In this simulation, the tube voltage and tube current can be set from 60 to 120 kVp in 10 kVp steps and 10 to 40 mAs in 10 mAs increments, and the distance from source can be set from 30 to 400 cm continuously. Iron and lead shields can be placed between the source and the detector, and shielding thickness can be set by 1 mm increments ranging from 1 to 20 mm. We surveyed to students for evaluating improvement of understanding spatial dose rate between before and after education by VR simulation. The survey was conducted with 5 questions(X-ray exposure factors, effects by distance from the source, effects from using shield, depending on material and thickness of shield, concept and measuring of spatial dose rate) and all answers showed significant improvement. Therefore, this VR simulation content will be well used in education for spatial dose rate and radiation safety environments.

Radiation Exposure Dose on Persons Engaged in Radiation-related Industries in Korea (한국에서 방사선 관련 종사자들의 개인피폭선량 실태에 관한 연구)

  • Lim, Bong-Sik
    • Journal of radiological science and technology
    • /
    • v.29 no.3
    • /
    • pp.185-195
    • /
    • 2006
  • Purpose: This study investigated the status of radiation exposure doses since the establishment of the "Regulations on Safety Management of Diagnostic Radiation Generation Device" in January 6, 1995. Method: The level of radiation exposure in people engaged or having been engaged in radiation-related industries of inspection organizations, educational organizations, military units, hospitals, public health centers, businesses, research organizations or clinics over a 5 year period from Jan. 1, 2000 to Dec. 31, 2004 was measured. The 149,205 measurement data of 57,136 workers registered in a measurement organization were analysed in this study. Frequency analysis, a Chi-square test, Chi-square trend test, and ANOVA was used for data analysis. Results: Among 57,136, men were 40,870(71.5%). 50.3% of them were radiologic technologists, otherwise medical doctors(22.7%), nurse(2.9%) and others(24.1%). The average of depth radiation and surface radiation during the 5-year period were found to decrease each year. Both the depth radiation and surface radiation exposure were significantly higher in males, in older age groups, in radiological technologists of occupation. The departments of nuclear medicine had the highest exposure of both depth and surface radiation of the divisions of labor. There were 1.98 and 2.57 per 1,000 person-year were exposed more than 20 mSv(limit recommended by International Commission on Radiological Protection) in depth and surface radiation consequently. Conclusion: The total exposure per worker was siginifcantly decreased by year. But Careful awareness is needed for the workers who exposed over 20 mSv per year. In order to minimize exposure to radiation, each person engaged in a radiation-related industry must adhere to the individual safety management guidelines more thoroughly. In addition, systematic education and continuous guidance aimed at increasing the awareness of safety must be provided.

  • PDF

Radiological Operating Technicians's Protective Behaviors on Radio-medical Measures in Hospitals (의료기관 방사선종사자들의 방사선안전관리에 대한 행위)

  • Han, Eun-Ok;Moon, In-Ok
    • The Journal of Korean Society for School & Community Health Education
    • /
    • v.8 no.1
    • /
    • pp.69-77
    • /
    • 2007
  • Background & Objectives: International radiation protection committee recognized the importance of radiation protection from medical practices because the exposure to the radiation in medical practice is higher than any other exposure. The factors on knowledge, attitude and practice of radiation safety of the medical workers engaged in radiation were analyzed in order to improve radiation safety technology. Method: Questionnaires were used for 1200 radiation workers in medical institution from July 23 through September 4 and collected for analysis. Results: Different level of safety measures were practiced by age, marital status, career, and medical facility. The difference was statistically significant. Higher levels of safety measures were practiced in the age group of 50s and married persons. The workers who have more than 20 years experience have higher level of safety measures. The workers of health centers have higher level of safety measures to compare with other workers. The factors which give more concerns on safety practice were self efficacy, practice and knowledge in order. Conclusion: Safety conscious operators should get additional education program to maintain higher level of safety. The operators who do not have much safety concern should be intensive training program for self efficacy and safety.

  • PDF

University Students' Awareness of Radiation (대학생들의 방사선에 대한 인식도)

  • Kim, Chang-Gyu
    • Journal of the Korea Convergence Society
    • /
    • v.3 no.1
    • /
    • pp.27-34
    • /
    • 2012
  • After Fukushima Nuclear Accident on Mar11, 2011, to grasp the thought of university students in Korea on radiation and medical radiation and seek for the right mass communication on the radiation safety of the people and the proper teaching method on radiation, 790 questionnaires from the universities which had a four-year department of radiological science in 5 provinces(Gyeonggi, Gangwon, Chungcheong, Jeolla, and Gyeongsang-do) all over the country were collected and analyzed. The questionnaire was composed of 36 items, and it was analyzed that one of the important causes that made them feel that radiation was dangerous was 'even if they were exposed to the small quantity of radiation, they could have trouble later.' ($3.28{\pm}1.05$). In the item of the control of radiation, there were the respondents who answered that the government should take action rather than an individual($3.87{\pm}0.89$). In the item of 'Fukushima Nuclear Accident made me think that 'We should not keep nuclear power generation', the result was $2.79{\pm}0.95$. In the item of 'My thought on the medical radiation has negatively changed since Fukushima Nuclear Accident', the students who hadn't taken the course related with radiation showed a negative thought on the medical radiation, such as, there was $2.64{\pm}1.02$ as a whole, $2.31{\pm}1.00$ in department of radiological science, $2.94{\pm}0.95$ in department of dental hygiene, and $3.13{\pm}0.82$ in other departments. And also, those who thought that the education of radiation was necessary were 82.28%, and T.V or Internet was thought as the most effective teaching method.