• Title/Summary/Keyword: 밝기히스토그램

Search Result 155, Processing Time 0.025 seconds

Local Histogram Equalization using Illumination Information (광원 정보를 이용한 지역 히스토그램 평활화 방법)

  • Kang, Hee;Song, Ki Sun;Kang, Moon Gi
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.155-164
    • /
    • 2014
  • Local histogram equalization is one of the most popular ways of enhancing the local brightness features of an input image. However, local histogram equalization reveals some problems. First, undesired artifacts are produced by over-enhancing the local features. Second, the enhancement of local features does not always result in global contrast enhancement. To cope with these problems, we propose an illumination driven local histogram equalization method. First, to estimate the illumination information, the proposed method combines the input image and the blurred image produced through the process of the down-sampling and the up-sampling. Next, the proposed method adaptively adjusts the mapping function estimated by the local histogram equalization using the information of the illumination. As a result, the proposed illumination information driven local histogram equalization method simultaneously enhances the global and the local contrast levels while preventing any local artifacts. Experimental results show that the proposed algorithm outperforms the conventional methods on objective and subjective criteria.

Contrast Improvement Technique Using Variable Stretching based on Densities of Brightness (명암의 밀도에 따른 가변 스트레칭을 이용한 영상대비 개선방법)

  • Lee, Myung-Yoon;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.12
    • /
    • pp.37-45
    • /
    • 2010
  • This paper proposes a novel contrast enhancement method which determines the stretching ranges based on the distribution densities of segmented sub-histogram. In order to enhance the quality of image effectively, the contrast histogram is segmented into sub-histograms based on the density in each brightness region. Then the stretching range of each sub-histogram is determined by analysing its distribution density. The higher density region is extended wider than lower density region in the histogram. This method solves the over stretching problem, because it stretches using density rate of each area on the histogram. To evaluate the performance of the proposed algorithm, the experiments have been carried out on complex contrast images, and its superiority has been confirmed by comparing with the conventional methods.

A Study on Class Sample Extraction Technique Using Histogram Back-Projection for Object-Based Image Classification (객체 기반 영상 분류를 위한 히스토그램 역투영을 이용한 클래스 샘플 추출 기법에 관한 연구)

  • Chul-Soo Ye
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.157-168
    • /
    • 2023
  • Image segmentation and supervised classification techniques are widely used to monitor the ground surface using high-resolution remote sensing images. In order to classify various objects, a process of defining a class corresponding to each object and selecting samples belonging to each class is required. Existing methods for extracting class samples should select a sufficient number of samples having similar intensity characteristics for each class. This process depends on the user's visual identification and takes a lot of time. Representative samples of the class extracted are likely to vary depending on the user, and as a result, the classification performance is greatly affected by the class sample extraction result. In this study, we propose an image classification technique that minimizes user intervention when extracting class samples by applying the histogram back-projection technique and has consistent intensity characteristics of samples belonging to classes. The proposed classification technique using histogram back-projection showed improved classification accuracy in both the experiment using hue subchannels of the hue saturation value transformed image from Compact Advanced Satellite 500-1 imagery and the experiment using the original image compared to the technique that did not use histogram back-projection.

An Efficient Video Coding Algorithm Applying Brightness Variation Compensation (밝기변화 보상을 적용한 효율적인 비디오 코딩 알고리즘)

  • Kim Sang-Hyun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.4
    • /
    • pp.287-293
    • /
    • 2004
  • This paper proposes an efficient motion compensation algorithm for video sequences with brightness variations. In the proposed algorithm, the brightness variation parameters are estimated and local motions are compensated. To detect the frame with large brightness variations, we employ the frame classification based on the cross entropy between histograms of two successive frames, which can reduce the computational redundancy. Simulation results show that the proposed method yields a higher peak signal to noise ratio (PSNR) than that of the conventional methods, with a low computational load, when the video scene contains large brightness changes.

  • PDF

Human Visual System-Aware and Low-Power Histogram Specification and Its Automation for TFT-LCDs (TFT-LCD를 위한 인간 시각 만족의 저전력 히스토그램 명세화 기법 및 자동화 연구)

  • Jin, Jeong-Chan;Kim, Young-Jin
    • Journal of KIISE
    • /
    • v.43 no.11
    • /
    • pp.1298-1306
    • /
    • 2016
  • Backlight has a major factor in power consumption of TFT-LCDs which are most popular in portable devices. There have been a lot of attempts to achieve power savings by backlight dimming. At the same time, the researches have shown image compensation due to decreased brightness of a displayed image. However, existing image compensation methods such as histogram equalization have some limits in completely satisfying the human visual system (HVS)-awareness. This paper proposes an enhanced dimming technique to obtain both power saving and HVS-awareness by combining pixel compensation and histogram specification for TFT-LCDs. This method executes a search algorithm and an automation algorithm employing simplified calculations for fast image processing. Experimental results showed that the proposed method achieved significant improvement in visual satisfaction per power saving over existing backlight dimming.

Robust object tracking using projected motion and histogram intersection (투영된 모션과 히스토그램 인터섹션을 이용한 강건한 물체추적)

  • Lee, Bong-Seok;Moon, Young-Shik
    • The KIPS Transactions:PartB
    • /
    • v.9B no.1
    • /
    • pp.99-104
    • /
    • 2002
  • Existing methods of object tracking use template matching, re-detection of object boundaries or motion information. The template matching method requires very long computation time. The re-detection of object boundaries may produce false edges. The method using motion information shows poor tracking performance in moving camera. In this paper, a robust object tracking algorithm is proposed, using projected motion and histogram intersection. The initial object image is constructed by selecting the regions of interest after image segmentation. From the selected object, the approximate displacement of the object is computed by using 1-dimensional intensity projection in horizontal and vortical direction. Based on the estimated displacement, various template masks are constructed for possible orientations and scales of the object. The best template is selected by using the modified histogram intersection method. The robustness of the proposed tracking algorithm has been verified by experimental results.

Background and Local Histogram-Based Object Tracking Approach (도로 상황인식을 위한 배경 및 로컬히스토그램 기반 객체 추적 기법)

  • Kim, Young Hwan;Park, Soon Young;Oh, Il Whan;Choi, Kyoung Ho
    • Spatial Information Research
    • /
    • v.21 no.3
    • /
    • pp.11-19
    • /
    • 2013
  • Compared with traditional video monitoring systems that provide a video-recording function as a main service, an intelligent video monitoring system is capable of extracting/tracking objects and detecting events such as car accidents, traffic congestion, pedestrian detection, and so on. Thus, the object tracking is an essential function for various intelligent video monitoring and surveillance systems. In this paper, we propose a background and local histogram-based object tracking approach for intelligent video monitoring systems. For robust object tracking in a live situation, the result of optical flow and local histogram verification are combined with the result of background subtraction. In the proposed approach, local histogram verification allows the system to track target objects more reliably when the local histogram of LK position is not similar to the previous histogram. Experimental results are provided to show the proposed tracking algorithm is robust in object occlusion and scale change situation.

Global Contrast Enhancement Using Block based Local Contrast Improvement (블록기반 지역 명암대비 개선을 통한 전역 명암대비 향상 기법)

  • Kim, Kwang-Hyun;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.1
    • /
    • pp.15-24
    • /
    • 2008
  • This paper proposes a scheme of global image contrast enhancement using local contrast improvement. Methods of global image contrast enhancement redistribute the image gray level distribution using histogram equalization without considering image properties, and cause the result image to include image pixels with excessive brightness. On the other hand, methods of the block-based local image contrast enhancement have blocking artifacts and a problem of eliminating important image features during an image process to reduce them. In order to solve these problems, the proposed method executes the block-based histogram equalization on temporary images that an input image is divided into various fixed-size blocks. And then it performs the global contrast enhancement by applying the global histogram equalization functions to the original input image. Since the proposed method selects the best histogram equalization function from temporary images that are improved by the block-based local image contrast enhancement, it has the advantages of both the local and global image contrast enhancement approaches.

An Adaptive Contrast Enhancement Method by Histogram Compensation (히스토그램 보정을 통한 적응형 명암비 향상 방법)

  • Kang, Hyun-Woo;Hwang, Bo-Hyun;Yun, Jong-Ho;Cho, Tae-Kyung;Choi, Myung-Ryul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.958-964
    • /
    • 2010
  • Histogram Equalization(HE) is one of the well known methods for contrast enhancement. but, it did not applied directly due to side effects such as significant change in brightness or washed out appearance. Many conventional method try to overcome this problem but they did not guarantee various image or depend on user define parameter. In this paper, an Adaptive histogram Compensated Histogram Equalization(ACHE) is proposed for contrast enhancement. ACHE has a parameter that based on median of input image. Histogram of input image is compensated according to parameter. And then finally compensated histogram is equalized. Experimental results show that proposed method suppresses side effects such as detail loss or washed out appearance. Moreover, parameter calculated automatically with low computation complexity. As a result, it could applies FPD directly.

Object Tracking using Color Histogram and CNN Model (컬러 히스토그램과 CNN 모델을 이용한 객체 추적)

  • Park, Sung-Jun;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.1
    • /
    • pp.77-83
    • /
    • 2019
  • In this paper, we propose an object tracking algorithm based on color histogram and convolutional neural network model. In order to increase the tracking accuracy, we synthesize generic object tracking using regression network algorithm which is one of the convolutional neural network model-based tracking algorithms and a mean-shift tracking algorithm which is a color histogram-based algorithm. Both algorithms are classified through support vector machine and designed to select an algorithm with higher tracking accuracy. The mean-shift tracking algorithm tends to move the bounding box to a large range when the object tracking fails, thus we improve the accuracy by limiting the movement distance of the bounding box. Also, we improve the performance by initializing the tracking start positions of the two algorithms based on the average brightness and the histogram similarity. As a result, the overall accuracy of the proposed algorithm is 1.6% better than the existing generic object tracking using regression network algorithm.