• Title/Summary/Keyword: 발효 효소액

Search Result 144, Processing Time 0.021 seconds

Production of $\alpha$-Amylase using Aqueous Two-Phase System (수성 2상계를 이용한 알파-아밀라제의 생산)

  • Choi, J.S.;Yoo, Y.J.
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.5
    • /
    • pp.358-362
    • /
    • 1988
  • Aqueous two-phase fermentation system was tested for the overproduction of extracellular enzyme through $\alpha$-amylase fermentation by Bacillus amyloliquefaciens. By employing aqueous two-phase system $\alpha$-amylase activity showed 25% increase compared to the result using regular medium and no deactivation of the enzyme was observed. The presence of polyethylene glycol was observed to promote the enzyme production, while to inhibit the growth of the microorganism. It is recommended that polyethylene glycol be added during the log-growth phase and dextran be added after the enzyme activity reaches Its maximum for efficient $\alpha$-amylase fermentation and in situ recovery of the enzyme.

  • PDF

Functional quality characteristics of extracts by sugar-leaching and lactic acid fermentation of mulberry leaves (Morus alba L.) (뽕잎의 당침 및 유산발효에 의한 추출물의 기능성 품질 특성)

  • Ryu, Il-Hwan;Kwon, Tae-Oh
    • Journal of Sericultural and Entomological Science
    • /
    • v.51 no.2
    • /
    • pp.164-172
    • /
    • 2013
  • This study was carried out to investigate functional quality characteristics of extract obtained after sugar-leaching for 12 weeks (SLE) and extract obtained after lactic acid fermentation for 8 weeks (LFE) of mulberry leaves. The yield, sugar content, pH, and total acidity of SLE were 27%, 43 $^{\circ}Brix$, 4.6, and 0.45%. The yield, sugar content, pH, and total acidity of LFE were 166%, 33 $^{\circ}Brix$, 3.6, and 1.17% respectively. The lactic acid bacteria viable numbers ($1.2{\times}10^{10}$ CFU/ml) of LFE were more than those of SLE ($2.8{\times}10^2$ CFU/ml). The LFE expressed activities of hydrolytic enzymes (amylase, cellulase, pectinase, protease), but SLE did not express. The contents of acetic acid, citric acid, and malic acid of SLE were higher than those of LFE, but lactic acid content of LFE was higher than that of SLE. The main free sugars of SLE were glucose (200.93 mg/g), fructose (236.32 mg/g), and sucrose (18.41 mg/g), but LFE did not detect all free sugars. The contents of polyphenol, anthocyanin, and piperidine alkaloid of LFE were higher than those of SLE. ${\alpha}$-Glycosidase activities were inhibited 3.4% and 16.2% by SLE and LFE. These results suggest that lactic acid fermentation extraction is an effective method to increase the yield and contents of functional quality of mulberry leaves extract.

Effect of Extract of Fermented Dropwort on Intestinal Bacteria and Enzymes In Vitro (미나리발효액이 장내 유해세균 및 유익균의 In Vitro 생육 및 효소활성에 미치는 영향)

  • Lee, Kyung-Ae;Kim, Moo-Sung;Cho, Hong-Bum
    • Korean Journal of Microbiology
    • /
    • v.44 no.4
    • /
    • pp.358-361
    • /
    • 2008
  • Effect of extract of fermented dropwort (Oenanthe stolonifera) on growth of intestinal harmful/useful bacteria and enzyme activity were investigated in vitro. The extract showed strong inhibition on harmful microbes including Vibrio and Salmonella, but mild inhibition on Bifidobacterium longum in both agar plate and liquid cultivation. Minimum inhibitory concentration (MIC) value of B. longum was the highest among tested microbes. Inhibition effect of fermented extract on harmful microbes increased according to fermentation period. Extract of fermented dropwort showed inhibitory effects on activity of microbial ${\beta}$-glucuronidase and tryptophanase. The inhibitory effects were also proportional to fermentation period. As consequence, it is assumed that the uptake of fermented dropwort might be useful for human intestinal health.

A Study on the Extraction of Alkaline Protease from Bacillus licheniformis Fermentation Broth using Reverse Micelle (역미셀을 이용한 Bacillus licheniformis 발효액으로 부터 알카리성 단백질 분해효소의 추출에 관한 연구)

  • 권성필;구윤모홍성안
    • KSBB Journal
    • /
    • v.6 no.1
    • /
    • pp.105-109
    • /
    • 1991
  • In separating alkaline protease from the bacteria (Bacillus licheniformis) fermentation broth using reverse micelle, effects of various factors;ionic strength, pH and surfactant concentration, on separation efficiency were studied. KCl controls the ionic strength. The lower KCl concentration was in the feed solution, the more protein and activity was recovered. The higher KCl concentration was in the stripping solution, the more protein and activity was recovered. Using sodium-di-2-ethylhexyl sulfosuccinate(Aerosol-OT or AOT) as a surfactant, the higher AOT concentration in the solvent, the more activity and protein were recovered. 0.1N NaOH and IN HCl were used to adjust pH. Maximum recovery of protein mass and activity were obtained at feed solution of pH 5.3. Maximum activity was recovered at stripping solution of pH 7.5

  • PDF

Reduction of Fermentation Time for Preparation of Dongchimi Juice (동치미액 제조를 위한 발효기간 단축 연구)

  • Kim, Dong-Hee;Chun, Yun-Kee;Kim, Woo-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.726-732
    • /
    • 1994
  • Development of an effective method for the preparation of dongchimi juice was investigated by addition of NaCl, sucrose and hydrolytic enzymes before fermentation and addition of dongchimi juice during fermentation. The Chinese radish was ground and suspended in water (1:1, w/v) with addition of spices of garlic, green onion and ginger followed by fermentation at $25^{\circ}C$. Increase in NaCl concentration of brinning solution from 1.0 to 5.0% resulted in a significant decrease in the rates of pH decrease and acidity increase. The sugar addition resulted in a faster changes of them, particulary after 24 hours at $25^{\circ}C$. The fermentation rate was also greatly improved by enzymatic hydrolysis with using viscozyme, a commercial polysaccharides hydrolyzing enzyme, before fermentation. When the fermented juices of two stage (pH 5.4 and pH 4.4) were added up to 15% before (pH 5.4 juice) and during (pH 4.4 juice) fermentation, the initial and second stage of fermentation were significantly improved. Therefore a method of addition of sugar, hydrolytic enzymes and dongchimi juice before or during fermentation was suggested for dongchimi juice preparation.

  • PDF

Effect of Enzyme and Inorganic Salts Addition and Heat Treatment on kimchi Fermentation (효소 및 염의 첨가와 순간 열처리가 김치발효에 미치는 영향)

  • Kang, Kun-Og;Ku, Kyung-Hyung;Lee, Hyung-Jae;Kim, Woo-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.183-187
    • /
    • 1991
  • The effects of microwave heat treatment and addition of enzyme, kimchi liquid, buffer solution and several salts on the changes in pH of kimchi liquid were investigated during fermentation at $25{\sim}35^{\circ}C$. It was found that microwave heat treatment on brined chinese cabbage and enzyme addition of cellulase and amylase showed a little improvement effect, while combination of both methods significantly increased the fermentation rate. The addition of kimchi liquid having pH 4.6 was found to be very desirable for both shortening the fermentation time and flavor acceptance. Among the inorganic salts and buffer solution studied, phosphate buffer(pH 4.6), sodium nitrite and $Na_2HPO_4$ were significantly effective for reduction of kimchi fermentation rate by two to three folds.

  • PDF

Saccharification and alcohol fermentation characteristics of a mixture of tapioca and hulled barley (타피오카와 겉보리 혼합원료의 당화 및 알코올 발효의 특성 연구)

  • Kim, Sun Hye;Oh, Jong Soo;Kang, Sung Tae
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.1
    • /
    • pp.18-23
    • /
    • 2019
  • An enzymatically saccharified tapioca and hulled barley (TB) raw mixed solution was used to examine alcohol fermentation characteristics. The TB mixture was liquefied with 0.04% ${\alpha}-amylase$ "Spezyme-Fred" and saccharified using an enzyme mixture (GPB), which consisted of glucoamylase (G), protease (P), and ${\beta}-glucanase$ (B). After the TB mixture (7:3, w/w) saccharified for 150 min at $50^{\circ}C$, its glucose content was 12.9% and viscosity was 26 cp. The use of GPB for the saccharification of TB was appropriate because the addition of ${\beta}-glucanase$ increases the glucose yield and decreases the viscosity of the saccharification liquid. The TB ratio was optimized to 7:3 (w/w) on the basis of the lower viscosity and the higher glucose content after saccharification. After TB mixture with 300% (w/w) water content was better condition than others for alcohol fermentation when it was carried out at $30^{\circ}C$. The alcohol and glucose contents of the TB mixture fermented for 72 h were 9.0 and 0.02%, respectively, and the pH and total acidity were 4.3 and 0.3%, respectively.

Effects of the Fermentation Periods on the Qualities and Functionalities of the Fermentation Broth of Wild Vegetables (발효기간이 산야채 발효액의 품질과 기능성에 미치는 영향)

  • Kim, Na-Mi;Lee, Jong-Won;Do, Jae-Ho;Yang, Jae-Won
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.272-279
    • /
    • 2003
  • To determine optimal fermentation period of wild vegetables mixed with black sugar without microorganisms during plant extract fermentation food processing, changes in chemical components, quality characteristics of the fermented broth, and physiological functionality during fermentation period were investigated. pH and $^{\circ}Bx$ of fermented broths decreased gradually during fermentation period. Except persimmon leaf, viscosity of fermented broths of wild vegetables decreased after 3 months fermentation period. Amylase activity increased to $167{\sim}800%$ of its initial level after 6 months fermentation period, and invertase activity decreased by $60{\sim}170$ units after 1 month fermentation. No significant level of cellulase activity was observed. In the sensory evaluation test, inherent flavors and tastes of the wild vegetable decreased during the fermentation period, while those of others gradually increased. Overall acceptability was the highest after 3 months fermentation. Content of total phenolic compounds and electron-donating ability were highest after 3 to 4 months fermentation period, and decreased thereafter. Except Mugwort, tyrosinase inhibitory activity was found in all fermented broths. SOD-like activities were $23.0{\sim}25.1$ and $27.0{\sim}29.2%$ in fermentation broths of acacia flower and persimmon leaf, respectively, and were maintained throughout the fermentation period. Based on these results, fermentation period of 3 to 4 months was determined to be appropriate for plant extract fermentation food processing.

Changes of Microorganisms, Enzyme Activity and Physiological Functionality in the Korean Soybean Paste with Various Concentrations of Ginseng Extract during Fermentation (인삼 농축액 첨가에 따른 재래식 된장 발효 과정중의 미생물, 효소 활성 및 기능성의 변화)

  • Jang, Sang-Moon;Lee, Joo-Baek;An, Hong;Rhee, Chang-Ho;Park, Heui-Dong
    • Food Science and Preservation
    • /
    • v.7 no.3
    • /
    • pp.313-320
    • /
    • 2000
  • In order to improve the functionality of Korean soybean paste the changes of microorganisms, enzyme activity and physiological functionality of five types of Korean soybean paste prepared with various concentrations of Ginseng extracts. The pH of Korean soybean paste was decreased during fermentation but total acidity was increased. NaCl concentrations was increased up to 15.67~16.90% until 30~45days of fermentation and amino acidity was increase of the mixture ratio of Ginseng extract. Reducing sugar content was increased up to 45days of fermentation and total sugar content was increased up to 16.92~20.01% until 30days of fermentation, but decreased after that. The number of bacteria was highest in all sample after 45days fermentation, while that of mold was decreased during fermentation. Amylase and protease showed the highest activity at 30days of fermentation. Tyrosinase activity was increased during fermentation. Antimutagenic activities of Korean soybean paste (10% Ginseng extract) were 80.90%, 62.46% against MNNG, NPD on S. typhimutium TA100 and 51.96%, 58.88% against NQO, NPD on S. typhimutium TA98.

  • PDF