• Title/Summary/Keyword: 발파 효과

Search Result 141, Processing Time 0.019 seconds

Evaluation of bonding state of tunnel shotcrete using impact-echo method - numerical analysis (충격 반향 기법을 이용한 숏크리트 배면 접착 상태 평가에 관한 수치해석적 연구)

  • Song, Ki-Il;Cho, Gye-Chun;Chang, Seok-Bue
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.2
    • /
    • pp.105-118
    • /
    • 2008
  • Shotcrete is one of the main support materials in tunnelling. Its bonding state on excavated rock surfaces controls the safety of the tunnel: De-bonding of shotcrete from an excavated surface decreases the safety of the tunnel. Meanwhile, the bonding state of shotcrete is affected by blasting during excavation at tunnel face as well as bench cut. Generally, the bonding state of shotcrete can be classified as void, de-bonded, or fully bonded. In this study, the state of the back-surface of shotcrete is investigated using impact-echo (IE) techniques. Numerical simulation of IE technique is performed with ABAQUS. Signals obtained from the IE simulations were analyzed at time, frequency, and time-frequency domains, respectively. Using an integrated active signal processing technique coupled with a Short-Time Fourier Transform (STFT) analysis, the bonding state of the shotcrete can be evaluated accurately. As the bonding state worsens, the amplitude of the first peak past the maximum amplitude in the time domain waveform and the maximum energy of the autospectral density are increasing. The resonance frequency becomes detectable and calculable and the contour in time-frequency domain has a long tail parallel to the time axis. Signal characteristics with respect to ground condition were obtained in case of fully bonded condition. As the ground condition worsens, the length of a long tail parallel to the time axis is lengthened and the contour is located in low frequency range under 10 kHz.

  • PDF

A numerical study on the behavior of existing and enlarged tunnels when widened by applying the pre-cutting method (Pre-cutting 공법을 적용한 터널 확폭 시 기존 및 확폭터널의 거동에 관한 수치해석적 연구)

  • Kim, Han-Eol;Nam, Kyoung-Min;Ha, Sang-Gui;Yoo, Han-Kyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.4
    • /
    • pp.451-468
    • /
    • 2020
  • Aging tunnels with small cross-sections can cause chronic traffic jams. This problem can be solved by widening the tunnel. In general, when the tunnel is expanded, the outer portion of the existing tunnel is excavated through a mechanical or blasting method. Such excavation affects not only the surrounding ground but also the existing tunnel. The application of the pre-cutting method can be a solution to these problems effectively. Therefore, if the widening of tunnel is performed by applying pre-cutting method, analysis of the impact of this method must be performed. In this study, in order to analyze the effect of applying pre-cutting in tunnel widening, numerical analysis is performed at six ground grades, from grade I to weathered rock. The analysis is performed with the expanding lane and the excavation length of pre-cutting as variables. In addition, the analysis is focused on the displacement of crown of the existing tunnel and the enlarged tunnel. As a result, the crown displacement of the enlarged tunnel is confirmed to converge at the same value regardless of the excavation length of the pre-cutting when the tunnel widening is completed. In the case of existing tunnels, uplift of crown occurs within 5 m of the front of the tunnel surface, and the shorter the excavation length of pre-cutting is found to be effective in preventing the occurrence of uplift.

Development of Improved Rock Bolt for Reinforcement of Fracture Zone in Slope and Tunnel (사면 및 터널에서의 암반 파쇄대 보강을 위한 개량형 록볼트 개발)

  • Kim, Soo-Lo;Kim, Jong-Tae;Park, Seong-Cheol;Kim, Tae-Heok;Kwon, Hyun-Ho;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.20 no.1
    • /
    • pp.101-109
    • /
    • 2010
  • There are many slopes generally developed by excavation and cut slope with small steps on massive slopes of roads. Especially these cut slopes which excavating around fault fracture zone need a reinforcement technology in order to ensure safety. In the case of slope excavation, it is difficult to use the existing slope support at fracture zone because of geological characteristics. Especially the factor of safety decreases significantly due to the movement of blocks in bed rocks and the expansion of interspace of discontinuous planes in fractured zones caused by excavation. Thus an efficient reinforcement technique in accordance with geological properties of fracture zones needs to be developed because the existing slope support has a restricted application. Therefore it is necessary to develop the specialized rock bolt technique in order to ensure an efficient factor of safety for anomalous fracture zones in slopes and tunnels. The purpose of this study is to develop newly improved rock bolt to increase a supporting effect of the swellex bolt method used recently as a friction type in fracture zones.

Microseismic Monitoring Using Seismic Mini-Array (소규모 배열식 지진관측소를 이용한 미소지진 관측)

  • Sheen, Dong-Hoon;Cho, Chang Soo;Lee, Hee Il
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.1
    • /
    • pp.53-58
    • /
    • 2013
  • It was introduced a seismic mini-array that could monitor microseismicity efficiently and analyzed seismic data obtained from the mini-array that was operated from December 19, 2012 to January 9, 2013. The mini-array consisted of a six channel data logger, a central 3 components seismometer, and a tripartite array of vertical sensors centered around the 3 components seismometer as an equilateral triangle with about 100 m aperture. All seismometers that had the same instrument response were connected a 6 channel data logger, which was set to record seismograms at a sampling rate of 200 sps. During the three weeks of campaign, a total of 16 microearthquakes were detected. Using time differences of P wave arrivals from the vertical components, S-P time from 3 components seismometers, and back azimuth from the seismic array analysis, it was possible to locate the hypocenter of the microearthquake even with one seismic miniarray. The epicenters of two nearest microearthquakes were a quarry site located 1.3 km from the mini-array. The records of quarry blasting confirmed the our analysis.

Electrical resistivity and seismic reflection mapping for the southeastern part of the Yongdong basin (Cretaceous), Korea (영동분지(백악기) 남동부의 전기비저항 및 탄성파탐사자료 해석)

  • Kim, Ji-Su;Han, Su-Hyeong;Lee, Cheol-U;Kim, Bok-Cheol;Yang, U-Heon;Son, Ho-Ung;Son, Yeong-Gwan
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.2
    • /
    • pp.77-90
    • /
    • 2000
  • Five electrical resistivity dipole-dipole and two seismic reflection surveys were performed in the southeastern margin of the Yongdong basin to delineate the shallow basin architecture. To investigate the intra-basin structure, twenty four resistivity sounding points and three dipole-dipole lines were selected especially in the vicinity of volcanic masses. The basin-fault boundaries are identified in electrical dipole-dipole resistivity section as high resistivity-contrast of approximately $1,500\;{\Omega}{\cdot}m$, characterized as a band of high standard-deviation. They are also effectively clarified in the seismic reflection data: amplitude and continuity contrasts in the common shot gather, first-arrival profiles, complex attribute plots. The intra-basin resistivity structures are constructed by interpolating vertical electrical sounding data and dipole-dipole profiles. The high-resistivity anomalies most likely originate from the northsouth-trending and northeast-dipping volcanic masses, which are to be further quantitatively investigated with geomagnetic and magnetotelluric surveys.

  • PDF

Prediction of the Minimum Required Pressure of Soundless Chemical Demolition Agents for Plain Concrete Demolition (무근콘크리트 해체시 무소음화학팽창제의 최소요구팽창압 예측)

  • Kim, Kyeongjin;Cho, Hwangki;Sohn, Dongwoo;Koo, Jaehyun;Lee, Jaeha
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.5
    • /
    • pp.251-258
    • /
    • 2018
  • In construction site, conventional methods such as jackhammer or explosive methods(dynamite) have been often used for the demolition of structures. Use of those methods are more carefully treated in environmentally and historically sensitive area. For those reasons, use of Soundless Chemical Demolition Agent(SCDA) is getting the spotlight. The SCDA is a powder which has expansive strength when it is mixed with water. In these Characteristics, SCDA can destroy the concrete or rock as it is poured into boreholes of the concrete or rock structures. However, there is no industrial standard for the use of SCDA effectively yet. In this study, experimental study to measure the expansive pressure was conducted depending on various boundary conditions such as waterproof, length of the steel pipe, submerged of steel pipe. Furthermore, computational analysis using damage plasticity model to predict the minimum required pressure of the SCDA for the concrete demolition depending on spacing between holes(k-factor) and compressive strength of the concrete was conducted. Obtained results indicates that water heat dissipation with submerged steel pipe shows the stable pressure for measuring the SCDA and hole distance(k-factor) is the most important factor for crack initiation of concrete.

Comparative analysis of cutting performance for basalt and granite according to abrasive waterjet parameters (연마재 워터젯 변수에 따른 현무암 및 화강암 절삭성능 비교분석)

  • Park, Jun-Sik;Cha, Hyun-Jong;Jo, Seon-Ah;Jung, Ju-Hwan;Oh, Tae-Min
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.5
    • /
    • pp.395-409
    • /
    • 2022
  • To overcome the limitation of conventional rock excavation methods, the excavation with abrasive waterjet has been actively developed. The abrasive waterjet excavation method has the effect of reducing blasting vibration and enhancing the excavation efficiency by forming a continuous free surface on the rock. However, the waterjet cutting performance varies with rock fracturing characteristics. Thus, it is necessary to analyze the cutting performance for various rocks in order to effectively utilize the waterjet excavation. In this study, cutting experiments with the high pressure waterjet system were performed for basalt and granite specimens. Water pressure, standoff distance, and traverse speed were determined as effective parameters for the abrasive waterjet cutting. The cutting depth and width of basalt specimens were analyzed to compare with granite results. The averaged cutting depth of basalt was shown in 41% deeper than granite; in addition, the averaged cutting width of basalt was formed by 18.5% narrower than granite. The results of this study are expected to be useful basic data for applying rock excavation site with low strength and high porosity such as basalt.

Evaluation of bonding state of shotcrete lining using nondestructive testing methods - experimental analysis (비파괴 시험 기법을 이용한 숏크리트 배면 접착상태 평가에 관한 실험적 연구)

  • Song, Ki-Il;Cho, Gye-Chun;Chang, Seok-Bue;Hong, Eun-Soo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.1
    • /
    • pp.71-83
    • /
    • 2009
  • Shotcrete is an important primary support for tunnelling in rock. The quality control of shotcrete is a core issue in the safe construction and maintenance of tunnels. Although shotcrete may be applied well initially onto excavated rock surfaces, it is affected by blasting, rock deformation and shrinkage and can debond from the excavated surface, causing problems such as corrosion, buckling, fracturing and the creation of internal voids. This study suggests an effective non-destructive evaluation method of the tunnel shotcrete bonding state applied onto hard rocks using the impact-echo (IE) method and ground penetration radar (GPR). To verify previous numerical simulation results, experimental study carried out. Generally, the bonding state of shotcrete can be classified into void, debonded, and fully bonded. In the laboratory, three different bonding conditions were modeled. The signals obtained from the experimental IE tests were analyzed at the time domain, frequency domain, and time-frequency domain (i.e., the Short- Time Fourier transform). For all cases in the analyses, the experimental test results were in good agreement with the previous numerical simulation results, verifying this approach. Both the numerical and experimental results suggest that the bonding state of shotcrete can be evaluated through changes in the resonance frequency and geometric damping ratio in a frequency domain analysis, and through changes in the contour shape and correlation coefficient in a time-frequency analysis: as the bonding state worsens in hard rock condition, the autospectral density increases, the geometric damping ratio decreases, and the contour shape in the time-frequency domain has a long tail parallel to the time axis. The correlation coefficient can be effectively applied for a quantitative evaluation of bonding state of tunnel shotcrete. Finally, the bonding state of shotcrete can be successfully evaluated based on the process suggested in this study.

Time-Lapse Crosswell Seismic Study to Evaluate the Underground Cavity Filling (지하공동 충전효과 평가를 위한 시차 공대공 탄성파 토모그래피 연구)

  • Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.1
    • /
    • pp.25-30
    • /
    • 1998
  • Time-lapse crosswell seismic data, recorded before and after the cavity filling, showed that the filling increased the velocity at a known cavity zone in an old mine site in Inchon area. The seismic response depicted on the tomogram and in conjunction with the geologic data from drillings imply that the size of the cavity may be either small or filled by debris. In this study, I attempted to evaluate the filling effect by analyzing velocity measured from the time-lapse tomograms. The data acquired by a downhole airgun and 24-channel hydrophone system revealed that there exists measurable amounts of source statics. I presented a methodology to estimate the source statics. The procedure for this method is: 1) examine the source firing-time for each source, and remove the effect of irregular firing time, and 2) estimate the residual statics caused by inaccurate source positioning. This proposed multi-step inversion may reduce high frequency numerical noise and enhance the resolution at the zone of interest. The multi-step inversion with different starting models successfully shows the subtle velocity changes at the small cavity zone. The inversion procedure is: 1) conduct an inversion using regular sized cells, and generate an image of gross velocity structure by applying a 2-D median filter on the resulting tomogram, and 2) construct the starting velocity model by modifying the final velocity model from the first phase. The model was modified so that the zone of interest consists of small-sized grids. The final velocity model developed from the baseline survey was as a starting velocity model on the monitor inversion. Since we expected a velocity change only in the cavity zone, in the monitor inversion, we can significantly reduce the number of model parameters by fixing the model out-side the cavity zone equal to the baseline model.

  • PDF

Effect of Animal Organic Soil Amendment on Growth of Korean Lawngrass and Kentucky Bluegrass (동물성 유기질 개량재가 들잔디 및 캔터키 블루그래스 잔디생육에 미치는 효과)

  • Koh, Seuk-Koo;Tae, Hyun-Sook;Ryu, Chang-Hyun
    • Asian Journal of Turfgrass Science
    • /
    • v.20 no.1
    • /
    • pp.33-40
    • /
    • 2006
  • Many soil amendments have been used nowadays to improve physical and chmical condition of turf soil, which might ultimately optimize turfgrass growth in golf courses. This study was carried out to Investigate the effects of new organic soil amendment containing pig excreta 50% and sawdust 50% on growth of zoysiagrass (Zoysia japonica L.) and kentucky bluegrass (Poa pratensis L.) in greenhouse. Three applicable treatments with soil mixtures of 10, 20, and 30% (v/v) animal organic soil amendment (AOSA) with sand, were tested for chemical property, physical property, visual quality and root length of zoysiagrass and Kentucky bluegrass. As results, application of $10{\sim}30%$ AOSA mixtures were proper to grow turfgrass in soil nutrition. Especially, the treatment with 20% AOSA mixtures showed 0.7% in organic matter, which meets to green standard of USGA. Also, 30% AOSA mixtures was 1.1% in organic matter, which might be desirable for zoysiagrass-planted golf courses in Korea. It was turned out that addition of AOSA decreased the hydraulic conductivity in soil physical property Because the sand possess high hydraulic conductivity, it is recommended to combine $10{\sim}30%$ AOSA with sand in order to sustain soil balance. The treatment with $10{\sim}30%$ AOSA noticeably increased visual quality of both zoysiagras and Kentucky bluegrass during 90 days. However, treatments with either 20% or 30% AOSA were effective to develop root length of zoysiagrass but treatments with 20% AOSA were more effective than that of 30% AOSA mixtures to promote root length of Kentucky bluegrass at 60 days. In conclusion, considering all vital factors such as visible quality, root growth, organic matter content, and economical efficiency, was taken, it is recommended that a $20{\sim}30%$ mixture of AOSA with sand is good for the growth of zoysiagrass and 20% mixture for Kentucky bluegrass.