• 제목/요약/키워드: 발파계수

검색결과 62건 처리시간 0.023초

도심지 미진동 제어발파에서 진동분석을 통한 안전 발파설계에 관한 연구(II) - 진동측정 자료의 통계적 분석을 위주로 - (A Study on the Safe Blasting Design by Statistical Analysis of Ground Vibration for Vibration Controlled Blasting in Urban Area (II))

  • 김영환;안명석;박종남;강대우;이창우
    • 화약ㆍ발파
    • /
    • 제18권2호
    • /
    • pp.7-13
    • /
    • 2000
  • 본 연구지역은 안산암지역으로 지반의 구조특성을 잘 나타내는 균열계수로서 암반특성을 표현하였고 발파진동식을 추정하는데 있어서 결정계수를 높여 오차를 최소화하였다. 측정자료 를 누적분석하였을 때 결정계수가 0.002~0.531로서 신뢰하기 어려웠으며 동일 장약량을 가진 동일거리군 군별 평균진동속도로서 회귀분석한 경우 결정계수는0.493~0.531으로 그다지 높지 않은 결과가 나왔고 절사평균을 이용한 결정계수는 0.307~0.487로서 역시 신뢰하기 어려운 결과를 도출했다 또한 샘플수를 가중치로 적용하는 방법의 결정계수는 0.644~0.752로서 본 연구의 적용 통계적 방법중 가장 높은 결과를 도출하였으며, 진동속도 표준편차의 영향을 가중치로 적용하는 방법의 결정계수는 0.516~0.668이었고 진동속도 분산의 영향을 가중치로 적용하는 방법의 결정계수는 0.516~0.685이었다. 그러므로 발파진동추정식을 산출할 때 동일장약량을 가지는 15m이내의 동일거리군에서의 진동평균속도에 가중치를 적용하여 얻은 회귀분석 결과가 가장 신뢰성이 높았다. 이 때 자승근일 때의 발파진동상수 $K_{95}$는 317.4, n은 -1.66이었고, 삼승근일 때의 발파진동상수 $K_{95}$는 209.9,n은 -1.60이었고 자승근과 삼승근의 교차점분석시 허용진동속도 4cm/sec에서 교차점은 31m이므로 발파지점으로부터의 거리가 31m이내는 삼승근 적용이 신뢰성이 높고, 31m이상일 때는 자승근 적용이 신뢰성이 높은 것으로 판단되었다.

  • PDF

발파에 의한 암반의 손상 영역 예측 (Prediction of Blast-Induced Damage Area in Rock)

  • 심영종;조계춘;김홍택
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.229-238
    • /
    • 2006
  • 암반터널굴착을 위한 발파시 이로 인한 암반의 최종 손상영역을 예측하는 것은 터널의 안전성을 위해 매우 중요하다. 그러나 복잡한 발파거동은 손상영역을 적절히 예측하는데 상당한 어려움이 있다. 이러한 어려움을 효과적으로 해결하기 위해 발파하중을 응력파와 가스압으로 분리한 많은 연구가 진행되었다. 응력파는 발파공 주위에 분쇄한(crushing annulus)과 파쇄균열대(fracture zone)를 형성시키며, 상당시간 지속되는 준정적인 가스는 파쇄균열대의 닫힌 균열내부에 침투하여 균열을 다시 진행시키는 역할을 하게 된다. 즉, 가스압은 최종적으로 암반에 손상을 가하는데 기여를 한다. 따라서 본 논문은 이러한 가스압에 의해 생성되는 균열의 최종 진행 길이를 예측함으로써 발파로 인한 최종 손상영역을 간단하게 예측할 수 있는 방법을 제시하고자 한다. 이를 위해 무한 탄성평면에서 발파공 주위에 대칭으로 형성되는 균열을 모델로 사용하였다. 이 모델에서 균열이 진행할 수 있는 조건과 가스의 질량이 일정하다는 두가지 조건을 사용하였다. 그 결과 응력집중계수는 균열이 진행할수록 감소하여 최종균열의 길이를 예측할 수 있었고, 그와 동시에 발파공에 작용하는 압력도 감소하는 것을 확인할 수 있었다.

  • PDF

도시지역 공사 시 발파 소음·진동 예측식 개발에 관한 연구 (A Study on the Development for Prediction Model of Blasting Noise and Vibration During Construction in Urban Area)

  • 권진욱;이내현;우정하
    • 환경영향평가
    • /
    • 제33권2호
    • /
    • pp.84-98
    • /
    • 2024
  • 본 연구는 인천, 수원, 원주, 양산 지역에서 발파작업 동안 취득한 320개의 발파 진동 및 발파 소음 데이터를 사용하여, 발파 진동 및 발파 소음 추정에 적용가능한 예측식을 개발하였다. 발파진동 예측식은 회귀분석결과, SRSD 및 CRSD에 의한 상관계수가 각각 0.879, 0.890이며 두 경우 모두 R2 ≥ 0.7로 나타났다. 발파소음 예측식은 단계적 회귀분석을 수행한 결과, 상관계수는 0.911, R2 ≥ 0.7로 유의미하게 높은 상관관계를 보였다. 상수값 결정을 위한 추가 회귀분석 결과 상관계수는 0.881, R2 ≥ 0.7로 나타났다. 상기의 결과, 개발된 예측식이 다른 도시지역의 재건축사업이나 공동주택 건설에 따른 환경영향평가나 교육환경평가의 소음·진동분야 보고서 작성 시 정합성이 높은 발파소음·진동 예측값을 도출할 수 있을것으로 기대한다.

측정수가 발파계수와 허용환산거리의 산정에 미치는 영향 (Influence of Sample Number on the Estimation of Blasting Coefficients and Limit Scaled Distance)

  • 양형식;전양수;정지문
    • 소음진동
    • /
    • 제8권5호
    • /
    • pp.814-820
    • /
    • 1998
  • Vibration data from two blasting sites were analyzed to determine the sufficient sample number for blasting vibration estimation. Most important result is that much more than 30 sample data and succeeding measurement are necessary to estimate confident blasting vibration level and to determine limit scaled distance.

  • PDF

에어볼 발파공법에 의한 진동 및 폭음 계측연구 (A Case Study of Air Ball Blasting Method)

  • 이신;김상욱;강대우
    • 화약ㆍ발파
    • /
    • 제23권2호
    • /
    • pp.15-21
    • /
    • 2005
  • 발파로 인한 환경적 문제는 주로 진동과 폭음에 대한 영향이나, 발파로 인한 파쇄도 및 경제성에 관해서도 효율적인 발파공법들이 많이 개발되고 있다. 이러한 문제를 해결하기 위한 방법으로 선진국에서 많이 사용되는 방법이 air decking을 이용하는 발파방법이다. 이미 선진국의 발파현장에서는 air decking 기술을 이용한 다양한 발파방법으로 VARI-STEM, GAS-BAG, POWER DECK등이 이용되어지고 있다. 본 연구에서는 이들 중에서 Air ball 제품을 이용한 발파공법에 대하여 연구하고 국내 현장적용과 효과에 대하여 분석하였다. 그 결과 발파진동의 경우에는 약 $30\~40\%$ 정도의 감쇄효과가 나타났고, 화약량의 경우 $20\~25\%$정도의 감소를 보였다. 또한 폭음의 경우에도 Air ball을 이용한 발파가 효과적이었으나 분석결과의 결정계수가 낮아 이는 더 많은 실험을 통하여 다시 분석해야 할 것으로 생각된다.

콘크리트 중력댐의 균열거동에 관한 연구 (A Study on the Crack Behaviour of the Concrete Gravity Dam)

  • 장희석;손병락;김희성
    • 한국전산구조공학회논문집
    • /
    • 제12권3호
    • /
    • pp.353-362
    • /
    • 1999
  • 본 연구에서는 콘크리트 중력식 댐의 임계균열길이가 계산되었으며 또한 복합균열의 균열선단에서 유효응력 확대계수의 변화량이 조사되었다. 작용하중으로는 댐 상부면에 작용하는 정수압과 댐의 균열면에 작용하는 수압 및 자중으로 구성된 정하중, 그리고 댐 주위에서 발파작업이 수행되는 경우에 고려될 수 있는 발파진동 및 동수압으로 구성된 동하중이 사용되었다. 균열이 발생한 위치와 방향 및 발파진동의 크기에 따라 임계균열길이가 계산되었으며, 또한 복합균열의 형태 및 균열선단 간의 이격거리에 따른 유효응력확대계수의 변화량이 검토되었다.

  • PDF

발파에 의한 터널주변 암반 손상대 발생 평가 (Investigation of Excavation Disturbed Zone Around a Tunnel by Blasting)

  • 권상기;조원진
    • 화약ㆍ발파
    • /
    • 제25권1호
    • /
    • pp.15-29
    • /
    • 2007
  • 고준위폐기물 처분연구를 위해 원자력연구원 내에 건설된 지하처분연구시설(KURT)에서 발파에 의해 발생하는 암반 손상대의 규모를 평가하기 위한 실험실 시험과 현장시험이 실시되었다. 실험실 시험결과 및 현장 시험결과 터널 벽면에서의 손상대는 1m 이상까지 발생하는 것으로 나타났다. 발파의 영향을 받은 구간($0{\sim}2(m)$)에서 회수된 암석 코아의 RQD 값은 발파영향을 받지 않은 구간에 비해 17% 낮게 나타났으며, 발파 후 암반 변형계수는 발파 전에 비해 약 40% 감소되는 것으로 나타났다.

발파소음의 예측기법과 환경규제 기준으로의 변환 연구 (A Study on the Prediction & Transformation of Blasting Noise for Environmental Regulation Standard)

  • 김남수;양형식
    • 화약ㆍ발파
    • /
    • 제18권2호
    • /
    • pp.14-22
    • /
    • 2000
  • 발파소음을 계측하여 예측방법의 타당성을 검토하였고, 환경규제 기준으로의 변환방식을 규명하였다. 환산거리에 따른 발파소음의 예측은 환산거리와 음압레벨의 상관성이 더 좋았으나, 상관계수가 낮아서 환산거리 설계 의한 발파소음의 조절은 어려움이 있었다. 발파시 동시에 측정된 음압레벨과 소음레벨의 상관식에 의한 변환과, 음압레벨의 우세주파수에 해당하는 청감보정회로의 보정치만큼 간이 보정하여 변환하는 방법과, 퓨리에 변환을 하여 청감보정한 후 소음레벨을 구하는 방법을 시도하였다. 세 가지 방법 모두 변환하는 데에는 많은 오차가 발생하였으나 우세주파수, FFT를 이용한 변환보다는 발파시 동시에 측정된 음압레벨과 소음레벨의 상관식에 의한 변환 방법이 가장 실용적인 방법이었다.

  • PDF

비장약량 맞춤형 터널발파 설계방법 (Tunnel Blasting Design Suited to Given Specific Charge)

  • 최병희;류창하;정주환
    • 화약ㆍ발파
    • /
    • 제27권2호
    • /
    • pp.33-41
    • /
    • 2009
  • 비장약량 또는 장약계수는 어떤 발파에서 파괴대상이 되는 암석의 총 부피 당 또는 총 무게 당 폭약 소비량으로 정의된다. 암석 톤당 또는 입방미터 당 폭약 소비량의 변화는 언제나 암질변화에 대한 좋은 지표가 된다. 광산현장에서는 통상 광석(ore) 톤당 폭약 소비량을 암석에 대한 발파 용이성의 척도로 사용하는 반면, 건설현장에서는 암석 입방미터 당 폭약 소비량을 사용한다. 본 논문에서는 터널발파를 대상으로 하므로 건설현장에서 사용하는 비장약량의 정의를 채택하였다. 지금까지 다양한 터널발파 설계법들이 제안되어 있지만 이런 방법들을 현장에 적용하였을 때 잘 맞지 않는 경우가 많다. 그 이유는 무엇보다 각 나라나 지역별로 암질조건이 서로 상이하기 때문인 것으로 보이며, 이러한 문제는 발파의 설계자나 시공자에게 기술적으로 상당한 부담이 될 수도 있다. 그런데 만일 우리가 주어진 암석에 대한 적정 비장약량을 알고 있다면 발파설계가 매우 쉬워질 수 있을 것이다. 이런 측면에서 본 논문에서는 사전에 결정된 비장약량이 있는 경우 그 비장약량에 맞추어서 터널발파를 설계할 수 있는 알고리즘을 제안하였다. 이 알고리즘은 터널단면 상의 다양한 영역에 서로 다른 구속도를 부여하는 개념을 토대로 하고 있으며, 기존에 알려진 터널발파 설계방법들과 조합하여 사용할 수 있는 경험적인 설계방법이다.