• Title/Summary/Keyword: 발틱 건화물 운임지수

Search Result 5, Processing Time 0.022 seconds

Forecasting Bulk Freight Rates with Machine Learning Methods

  • Lim, Sangseop;Kim, Seokhun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.7
    • /
    • pp.127-132
    • /
    • 2021
  • This paper applies a machine learning model to forecasting freight rates in dry bulk and tanker markets with wavelet decomposition and empirical mode decomposition because they can refect both information scattered in the time and frequency domain. The decomposition with wavelet is outperformed for the dry bulk market, and EMD is the more proper model in the tanker market. This result provides market players with a practical short-term forecasting method. This study contributes to expanding a variety of predictive methodologies for one of the highly volatile markets. Furthermore, the proposed model is expected to improve the quality of decision-making in spot freight trading, which is the most frequent transaction in the shipping industry.

해운이슈 - 한국해양수산개발원 "해운시황 : 위기와 기회" 발표

  • 한국선주협회
    • 해운
    • /
    • s.89
    • /
    • pp.10-18
    • /
    • 2012
  • BDI지수가 지난 2월3일 647p를 기록한 이후 소폭 반등하여 2월23일 706p를 기록했다. 1985년 발틱해운거래소가 건화물 운임지수 BFI를 발표한 이후 1986년 8월27일 645p 이후 역사적으로 최저치를 기록하였다. 한편 2월3일 BDI가 저점을 확인하고 소폭 반등하였으나, 파나막스 선형이 저점 대비 1,462달러/일 상승했으나, 타 선형의 반등폭이 매우 미미한 상황이다. 다음은 한국해양수산개발원에서 발표한 "해운시황 : 위기와 기회"의 주요 내용을 요약정리한 것이다.

  • PDF

Analysis of Baltic Dry Bulk Index with EMD-based ANN (EMD-ANN 모델을 활용한 발틱 건화물 지수 분석)

  • Lim, Sangseop;Kim, Seok-Hun;Kim, Daewon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.329-330
    • /
    • 2021
  • 벌크화물운송은 해상운송시장에서 가장 큰 규모이고 철강 및 에너지 산업을 뒷받침 하는 중요한 시장이다. 또한 운임의 변동성이 가장 큰 시장으로 상당한 수익을 기대할 수 있는 반면에 파산에 이르는 큰 손실이 발생할 수 있기때문에 시장 참여자들은 합리적이고 과학적인 예측을 기반하여 의사결정을 해야 한다. 그러나 해운시장에서는 과학적 의사결정보다는 경험기반의 의사결정에 의존하기 때문에 시황변동성에 취약하다. 본 논문은 벌크운임예측에 신호 분해 방법인 EMD와 인공신경망을 결합한 하이브리드 모델을 적용하여 과학적 예측방법을 제시하고자 한다. 본 논문은 학문적으로 해운시장 운임예측연구에서 거의 시도되지 않았던 시계열분해법과 기계학습기법을 결합한 하이브리드 모델을 제시하였다는데 의미가 있으며 실무적으로는 해운시장에서 빈번이 일어나는 의사결정의 질이 제고되는데 기여할 것으로 기대된다.

  • PDF

Analysis of the Synchronization between Global Dry Bulk Market and Chinese Container Market (글로벌 건화물 운임시장과 중국 컨테이너 운임시장 간의 동조성 분석)

  • Kim, Hyun-Sok;Chang, Myung-Hee
    • Journal of Navigation and Port Research
    • /
    • v.41 no.1
    • /
    • pp.25-32
    • /
    • 2017
  • The purpose of this investigation is to analyze the synchronization between the representative global freight index, the Baltic Dry bulk Index (BDI) and the China Container Freight Index (CCFI) with monthly data from 2000 to 2016. Using the non-stationarity of the business cycle that is able to include common trends, we employ the Engle-Granger 2 stage co-integration test and found no synchronization. On the contrary, we additionally estimated the causality between the markets and revealed the causality, which implies that the Chinese economy has a significant effect on the global market. The results of this empirical analysis demonstrate that the CCFI of China is appropriate for analyzing the shipping industry. In practice, this means that it is more appropriate to include CCFI in the global market outlook than use it as a substitute for the global freight rate index, the BDI. This is a case study of the synchronization of the economic fluctuations of the shipping industry. It suggests that the economic fluctuations of China need to be considered in the unstable global market forecast. In particular, this case applies to the fluctuations in the shipping industry synchronism and provides important results in scientific terms.

A Study on Early Warning Model in the Dry Bulk Shipping Industry by Signal Approach (신호접근법을 이용한 건화물시장 해운조기경보모형에 관한 연구)

  • Yun, Jeong-No;KIm, Ga-Hyun;Ryoo, Dong-Keun
    • Journal of Navigation and Port Research
    • /
    • v.42 no.1
    • /
    • pp.57-66
    • /
    • 2018
  • Maritime industry is affected by outside factors significantly due to its derivative demand characteristics. However, the supply side can not react to these changes immediately and due to this uniqueness, maritime industry repeats the boom-bust cycle. Therefore the government itself needs to operate early warning system in order to monitor the market and notice the upcoming risks by setting up a system to prepare for the situations. In this research, signal approach is used to establish early warning system. Overall leading index is composed of crisis index that is based on BDI(Baltic Dry Index) and various leading indexes such as finance, economy, shipping and the others. As a result of computing overall leading index which is early warning system in maritime through signal approach, the index showed a high correlation coefficient with actual maritime risk index by difference of 4 months. Also, the result was highly accurate with overall leading index's QPS(Quadratic Probability Score) at 0.37.