• Title/Summary/Keyword: 발열 블록

Search Result 22, Processing Time 0.031 seconds

Analysis of the Risk of Heat Generation due to Bolt Loosening in Terminal Block Connector Parts (볼트풀림에 의한 터미널 블록의 접속부 발열 위험성 분석)

  • Yeon, Yeong-Mo;Kim, Seung-Hee
    • Fire Science and Engineering
    • /
    • v.34 no.3
    • /
    • pp.67-75
    • /
    • 2020
  • In this study, the risk of heat generation due to normal and overload currents that vary with the abnormal loosening angle of wire-connecting bolts were identified. The risks were analyzed based on the thermal characteristics to minimize the carbonization accidents of terminal blocks inside distribution panels typically used in industrial sites. We applied a method for measuring the heating temperature and temperature variations in the terminal blocks in real-time by installing a resistance temperature detector sensor board in the terminal block. The experimental results showed that the terminal block model with a low-rated current exhibited a higher heating temperature, thus, confirming the need to select the terminal block capacity based on load currents. Additionally, the higher the rated current of the terminal block with a high-rated current and the higher the degree of loosening, the faster the carbonization point. Such heating temperature monitoring enabled real-time thermal temperature measurement and a step-by-step risk level setting through thermal analysis. The results of the measurement and analysis of carbonization risks can provide a theoretical basis for further research regarding the risk of fire due to carbonization. Furthermore, the deterioration measurement method using the temperature sensor board developed in this study is widely applicable to prevent fires caused by poor electrical contact as well as risk-level management.

Analysis of Three-Dimensional Mixed Convection Flow About Uniformly Distributed Heat-Generating Blocks on a Conductive Wall (기판 위에 분포된 발열블록 주위의 3차원 혼합대류 열전달 해석)

  • Yun, Byeong-Taek;Choi, Do Hyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.1-11
    • /
    • 1999
  • The three-dimensional laminar mixed convection flow between the conductive printed circuit boards. on which the heat generating rectangular blocks are uniformly distributed, has been examined in the present study. The flow and heat-transfer characteristics are assumed to be pseudo periodic in the streamwise direction and symmetric in the cross-stream direction. Using an algorithm of SIMPLER, the continuity equation. the Navier-Stokes equations and the energy equation are solved numerically in the three-dimensional domain Inside the channel. The convective derivative terms are discretized by the QUICK scheme to accurately capture the flow field. The flow and the heat transfer characteristics are thoroughly examined for various Re and Gr.

Numerical Analysis on the Heat Transfer Characteristics of Multiple Slot Jets at the Surface of Protruding Heated Blocks (충돌제트의 간격변화에 따른 발열블록 표면에서의 열전달 특성에 관한 수치해석)

  • 박시우;정인기
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.229-237
    • /
    • 2003
  • The flow and heat transfer characteristics at the surface of two-dimensional protruding heated blocks using confined impingement multiple slot jets were computationally investigated Numerical predictions were made for round-edged nozzles at several nozzle-to-target plate spacings and jet-to-jet distances, with turbulent jet Reynolds numbers ranging from 2000 to 7800. The commercial finite-volume code FLUENT was used to solve the heat transfer characteristics and flow fields using a RNG $\textsc{k}-\varepsilon$ model. The computed heat transfer characteristics at the surface of heated blocks were in good qualitative agreement with previous experimental data The results of heat transfer characteristics on the surface of protruding heated blocks are important considerations in electronics Packaging design.

Effect of nozzle geometry on the jet impingement heat transfer characteristics at protruding heated blocks (노즐형상에 따른 돌출 발열블록표면에서의 충돌분류 열전달 특성)

  • Chung, In-Kee;Park, Si-Woo
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.93-98
    • /
    • 2000
  • An experimental investigation on heat transfer characteristics of two-dimensional heated blocks using a confined impinging slot jet has been performed. At p/w=1, the effects of jet Reynolds number($Re=3900{\sim}12000$), dimensionless nozzle to block distance(H/B=1, 2, 4, 6) and nozzle type have been examined with five isothermally heated blocks. With the measurement of jet mean velocity and turbulence intensity distributions at nozzle exit, initially turbulent regimes, are classified. To clarify local heat transfer characteristics, naphthalene sublimation technique were used. The local and average heat transfer of heated blocks increase with the sharp-edged nozzle and increasing jet Reynolds number.

  • PDF

Heat transfer characteristics of multiple slot jets at the surface of protruding heated blocks (돌출 발열블록 표면에서의 배열 충돌제트에 의한 열전달 특성)

  • Chung, In-Kee;Park, Si-Woo;Hong, Sung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.274-279
    • /
    • 2001
  • An experimental investigation of heat transfer characteristics at the surface of two-dimensional protruding heated blocks using confined impinging multiple slot jets has been performed. The effects of jet-to-jet distances(S=16B, 24B), dimensionless nozzle-to-block distances(H/B=2, 6) and jet Reynolds numbers(Re=2000, 3900, 5800, 7800) on the local and average heat transfer coefficients have been examined with five isothermally heated blocks at streamwise block spacing(p/w=1). To clarify local heat transfer characteristics, naphthalene sublimation technique was used. From the results, it was found that the local and average heat transfer of heated blocks increases with decreasing jet-to-jet distance and increasing jet Reynolds number. Measurements of local heat transfer coefficients have given an indication of the nature of the interaction between jets and of the uniformity of heat transfer obtainable with various arrangements. In the case of S/B=16, H/B=6 and Re=7800, maximum average Nusselt number of overall blocks was obtained.

  • PDF

Study on the Jet Impingement Heat Transfer Characteristics at Protruding heated Blocks (돌출 발열블록표면에서의 충돌분류 열전달 특성에 관한 연구)

  • Jeong, In-Gi;Park, Si-U;Park, Su-Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.12
    • /
    • pp.1670-1677
    • /
    • 2000
  • An experimental investigation on heat transfer characteristics of two-dimensional heated blocks using a confined impinging slot jet has been performed. The effect of jet Reynolds number(Re=3900, 5800, 9700), streamwise block spacing(p/w=0.5, 1, 1.5) and dimensionless nozzle to block distance(H/B=1, 2, 4, 6) have been examined with five isothermally heated blocks. With the measurement of jet mean velocity and turbulence intensity distributions at nozzle exit, initially turbulent regimes, are classified. To clarify local heat transfer characteristics, naphthalene sublimation technique as used. The maximum Nusselt number at the stagnation point for the jet Reynolds number is occurred at H/B=4. Besides, the local and a average heat transfer of heated blocks increase with decreasing streamwise block spacing and increasing jet Reynolds number.

Heating Transferring Charcteristics of Cement Mortar Block with Waste CNT and Conduction Activator (폐CNT와 전도촉진재를 혼입한 시멘트 모르타르 블록의 발열 전도 특성)

  • Koo, Hounchul;Kim, Woon-Hak;Oh, Hongseob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.2
    • /
    • pp.176-183
    • /
    • 2022
  • High-purity waste CNTs were mixed into cement mortar to manufacture heat-generating concrete that can use low voltage power, and carbon fiber and waste cathode materials were also used improve the conductivity of the mortar. The waste CNTs were analyzed to have a high concentration of multi-walled CNTs, and substituted liquid type waste CNTs were used during mortar mixing in order to increase dispersibility. The temperature change of the mortar with CNT was evaluated when using electric power below DC 24 V in order to utilize a small self-generation facility such as small solar power module when the mortar heats up and to minimize electromagnetic waves. When liquid-type waste CNTs were applied and a voltage of DC 24 V was introduced, it rose to 60 ℃ in a 200 × 100 × 50 mm mortar block specimen. The field applicability of self heating mortar with waste CNT was sufficient and also the amount of change in heat energy in mortar with liquid type waste CNT, carbon fiber and waste cathode materials is more effective compared to it of other variables.

Study on the Field Application of Odor Detector for Electric Fire Prevention (전기화재 예방용 향 검지기의 현장 적용 사례 연구)

  • Choi, Chung-Seog;Kim, Hyang-Kon;Park, Yoon-Seok;Yang, Jung-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2007.04b
    • /
    • pp.82-84
    • /
    • 2007
  • 본 논문에서는 전기화재 예방을 위한 향 검지기 및 향 캡슐, 향 센서의 구조와 향 검지 시스템의 동작원리에 대하여 다루었으며, 이 향 검지 시스템을 산업 현장에서 많이 사용되는 단자대(터미널 블록)와 저압용 차단기의 체결나사의 접촉 불량에 의한 이상 발열에 적용하여 향 검지 시스템의 동작 특성과 유효성에 대하여 검증하였다. 향 검지시스템을 현장에 적용하여 확인한 결과 효과적으로 이상 발열을 감지하여 음성과 표시로 관리자에게 통보해 줌을 확인할 수 있었다.

  • PDF

Effect of pyrolysis temperature and pressing load on the densification of amorphous silicon carbide block (열분해 온도와 성형압력의 영향에 따른 비정질 탄화규소 블록의 치밀화)

  • Joo, Young Jun;Joo, Sang Hyun;Cho, Kwang Youn
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.6
    • /
    • pp.271-276
    • /
    • 2020
  • In this study, an amorphous SiC block was manufactured using polycarbosilane (PCS), an organosilicon polymer. The dense SiC blocks were easily fabricated in various shapes via pyrolysis at 1100℃, 1200℃, 1300℃, 1400℃ after manufacturing a PCS molded body using cured PCS powder. Physical and chemical properties were analyzed using a thermogravimetric analyzer (TGA), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and universal testing machine (UTM). The prepared SiC block was decomposed into SiO and CO gas as the temperature increased, and β-SiC crystal grains were grown in an amorphous structure. In addition, the density and flexural strength were the highest at 1.9038 g/㎤ and 6.189 MPa of SiC prepared at 1100℃. The manufactured amorphous silicon carbide block is expected to be applicable to other fields, such as the previously reported microwave assisted heating element.

Block Smart Rack Technology Development for Increased Efficiency (효율성 증가를 위한 블록 단위 스마트 랙 기술 개발)

  • Tae, Hyo-Sik;Park, Koo-Rack
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.4
    • /
    • pp.11-16
    • /
    • 2015
  • Data center, not only the development of globally of cloud-based IT solutions, As the big data, education, use of development electronic equipment of communication means is increased, Demand of domestic and international data center has increased steadily. Due to the increase of data center demand, heat generation of server rack due to the development of IT equipment is also increasing continuously. Calculating heat value of the data center, because more than 99% of the power usage of IT server is converted into heat, the calorific value as the size and capacity of the server is larger will increase. In this paper, to center the cooling system of air-cooled, and research and development of air conditioning systems for energy reduction of data center, through performance analysis and simulation, it has been analyzed that there is energy savings.