• Title/Summary/Keyword: 발사장

Search Result 161, Processing Time 0.019 seconds

Analysis of Safety Regulation and Chemical Reactivity of Hypergolic Propellant (접촉점화성 추진제 안전기준 및 상호반응성 분석)

  • Eungwoo Lee;Ahntae Shin;Sangyeon Cho;Byeongmun Park
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.108-115
    • /
    • 2023
  • Although hydrazine is an excellent liquid propellant, caution is required during storage and handling due to its high toxicity and reactivity. Safety guidelines should be established in consideration of the chemical reactivity by unintended leakage. In this study, the status of hydrazine facilities at launch site and safety standards for storing and handling were investigated and then, the reactivity between chemicals and hydrazine was analyzed. As a result of the analysis, hydrazine has reactivity with the exception of fuel oil. This paper emphasizes the imperative nature of constructing a dedicated hydrazine storage facility. Ensuring compatibility between hydrazine and the materials used in storage containers and handling equipment is crucial to prevent undesired reactions that could compromise safety. It was intended to be used as basic data to secure the range safety when handling hydrazine.

KSLV-I 소형위성발사체 발사장 시스템설계(Ⅰ)

  • Lee, Young-Ho;Jin, Seung-Bo;Seo, Jin-Ho;Hong, Il-Hee;Cho, Gwang-Rae
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.98-103
    • /
    • 2004
  • This paper describes a system design of Launch Ground Complex for the Korea Space Launch Vehicle-I which will play so important roles of successful execution for Korea National Space Development Program. Launch Ground Complex has to supply safe work space, construction and equipments for assembling, check-out and launching of the space launch vehicle, and it consists of Mechanical, Electrical, Fluid Ground Support Equipment and Infrastructure. Mechanical Ground Support Equipment consists of Launch Pad, Mobile Assembly Tower, Umbilical Tower, Lightning Tower, Theodolite Building and Auxiliary.

  • PDF

공중발사형 3단 로켓 개발에 관한 연구

  • 이재우;황진용;변영환;이창진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.12-12
    • /
    • 2000
  • 우리 나라는 일본상공의 비행을 피하기 위하여 제주도와 남해안 근해로 발사장 선정이 국한되는 지정학적인 위치로 볼 때 발사장 선택에 제한이 없는 공중발사에 대한 가능성 연구가 필요한 시점에 있다. 본 연구는 우리 나라와 같은 분단 된 특수상황 그리고 지정학적 위치에서의 발사장을 고려한 우주 발사체 개발의 필요성에 따라 F-4에 장착 가능한 3단형 공중발사 로켓을 설계하고 1/3의 축소 모형을 제작하였다. 2kg의 payload를 갖는 발사체의 1단은 LRM ( Lox/kerosene )을 사용하였고 2, 3단은 SRM ( HTPB/AP/Al )을 사용하였으며 발사고도는 11-l2km 상공에서 F-4에 의해서 발사되고 31km지점에서 1단 분리가 이루어지며 62km지점에서 2단 분리와 nose fairing을 분리하게 된다. 전장은 6.85m 이며 전체 무게는 560.6kg 이고 전체 발사체 시스템의 CAD 도면은 아래 그림 1과 같이 주어져 있다. 그림 2에서는 F-4E phantom의 장착성을 검토해 본 결과 장착이 가능함을 알 수 있었으며 추진제 양의 감소로 크기를 대폭 줄일 수 있었다.

  • PDF

A study on licensing of a launch site (인공위성 발사장 관리방안에 대한 연구)

  • Park, Geun-Young;Yoo, Seung-Woo;Jin, Young-Kwon
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.17
    • /
    • pp.163-174
    • /
    • 2003
  • The space center will be constructed by 2005 for launch of KSLV-I at Woinara-Do, Haban Village, Yenae-Ri, Bongrae-Myon, Kohung-Goon, Junlanam Province on the southern coast of the Korean peninsular. This will make Korea be the 13th advanced country in space development having launching site in the world. This paper presents licensing and safety requirements to protect the public from the risks associated with activities at a launch site.

  • PDF

Development and Performance test of Mechanical Support Equipment for Assebmly/Integration of KSLV-I (KSLV-I 총조립용 기계지원장비 개발 및 성능시험)

  • Jin, Seung-Bo;Chung, Eui-Seung
    • Aerospace Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.116-124
    • /
    • 2010
  • Ground complex composed of Assembly Complex(AC) and Launch Complex(LC) which is located on Oenarodo space center in Kohung is necessary for successful launching of KSLV-I. AC performs accepting of a KSLV-I 1st stage and 2nd stage, stage assembly, the integrated launch vehicle, the checked out, and all kinds of performance test, pre-launch tests and processing. At AC, the mechanical support equipments, that is called the technological equipments, are installed in the Launch Vehicle Assembly Test Building(LVATB). These technological equipments have diverse forms of an interface with mechanical/electric device of the launch vehicle and have to provide a condition and the performance guarantee of an optimum in the launching operation process. In this paper, the requirements specification and manufacturing performance test for the mechanical support equipments which are used in the assembly/disassembly and test of the launch vehicle are introduced.

Technical Trends of Launch Complex of Neighboring Countries of Korean Peninsula - Russia and China (한반도 주변국의 우주발사체 발사대 현황 소개 - 러시아 및 중국 사례)

  • Kang, Sunil
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.41-46
    • /
    • 2017
  • The three neighbors of Korean peninsula, Japan, China, Russia are leading countries of the world as national power and economic power. They are also leading the field of science, particularly top class in the space development. In comparison, our country, Korea, has been going on develop new launch vehicle and building new launch complex in accordance with national space program. In this paper, examining the technical trends of launch complex of Russia and China which based on Russian rocket technologies and it will make a reference for KSLV-II and future space program through this information.

  • PDF

Analysis on Acoustic Noise around Launch Pad Induced by the Launch of a Space Launch Vehicle (우주발사체 발사에 의한 발사장 주변의 음향 소음 분석)

  • Sim, Hyung-Seok;Choi, Kyu-Sung;Ko, Jeong-Hwan;Roh, Woong-Rae
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.208-215
    • /
    • 2012
  • The acoustic noise around a launch pad by launches of space launch vehicles was analyzed. The magnitudes of sound noise at some points near launch pad were predicted by locating the sound source at the exhaust jet plume of the rocket engine and considering several factors such as the directivity of the sound propagation and atmospheric attenuation. Specifically, the launch noise of Korea Space Launch Vehicle-I (KSLV-I) was estimated, and was compared to the actual measurement results. The analysis results proved to be heavily affected by the characteristics of directivity of sound propagation and the analysis showed good agreements with the measurements when the directivity of the sound was appropriately adjusted.

Geostationary Satellite Launch Site and Orbit Injection (정지궤도위성 발사위치와 궤도투입에 관한 고찰)

  • DONG-SUN KIM
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.3
    • /
    • pp.27-33
    • /
    • 2024
  • According to the success of the Nuri Space Launch Vehicle (KSLV-II) and the development goal of the next generation space launch vehicle (KSLV-III), it is expected that the domestic geostationary satellite capability will be increased from (1 to 3.7) ton. Also, it is predicted that substantial ability of about 1 ton can be provided for the space exploration of the Moon, Mars, asteroids, etc. The Goheung space launch site is optimized for sun-synchronous small satellites, and due to the essential precondition that the launch trajectory does not impinge another country's sovereign airspace, it is not satisfactory as a geostationary satellite launching site. Its latitude also requires more energy to shape the rotating orbital plane from the initial injection status. This results in a decreasing factor of economic feasibility, including the operating complexity. Therefore, in parallel with the development of a next generation space launch vehicle, the practical process for acquisition of oversea land or sea space launch site near the Earth's equator and research for the optimization of orbiting methods of geostationary satellite injection must be continued.

액체추진기관 Rocket의 발사를 위한 지상공급시스템 개발

  • 이정호;길경섭;김용욱;조상연;오승협
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.90-90
    • /
    • 2003
  • 한국항공우주연구원은 액체추진기관 시스템을 이용한 3단형과학로켓(이하 KSR-III)을 국내 최초로 개발하여 비행시험을 수행하였다. 액체추진기관 로켓의 비행시험을 위해서는 이전의 고체 추진기관을 이용한 과학로켓 1, 2와는 달리 비행시험 조건에 부합하게 액체추진제 및 가압제 등을 공급하는 지상설비가 필요하다. 이에 한국항공우주연구원은 독자적으로 비행시험에 필요한 제반 설비를 갖춘 발사장을 구축하였다. KSR-III는 압축 헬륨가스(GHe)를 이용하여 연료(Jet A-1)와 산화제(LOx)를 가압하여 추력을 얻는 액체추진기관 시스템이다. 따라서 발사장에서의 지상공급설비는 유공압 설비와 발사시나리오에 따라 해당 부품을 제어하고 자료를 저장하는 제어/계측 설비 및 기타설비들로 구성되어 있다. 지상공급설비 중 유공압 설비는 LOx의 저장 및 기체 내 산화제 탱크의 충전을 위한 산화제 공급설비, Jet A-1의 저장 및 기체 내 연료 탱크의 충전을 위한 연료 공급 설비, 지상설비용 밸브구동 및 기체 내부 퍼지 등에 필요한 질소($N_2$)를 저장/공급하는 설비, 기체내부 밸브 구동 및 가압제로 사용되는 기체헬륨(He)을 저장/공급하는 설비들로 구성되어 있다. 이러한 구축된 공급설비는 기능시험, 연계시험 등의 각종 입증시험을 통해 그 성능을 검증한 후 단인증모델(SQTM)을 이용하여 발사 시나리오에 따른 추진제 공급능력을 입증한 후 KSR-III의 비행시험을 성공적으로 수행하였다. 수행된 연구결과는 향후 건설되어질 우주센터내의 발사장 기반설비 설계의 기초 자료로 활용할 수 있을 것이다.

  • PDF

Analysis of Improvement Targets for Public Safety Threats in the Maritime Area Around the Launch Site (발사장 주변 해상의 공공안전 위협요인에 대한 개선 대상 분석)

  • Ahn-Tae Shin;Hun-Soo Byun
    • Korean Chemical Engineering Research
    • /
    • v.62 no.2
    • /
    • pp.153-162
    • /
    • 2024
  • Securing safety in the maritime danger zone around the launch site before a launch is a fundamental requirement. If maritime safety is not ensured, the launch is halted or postponed. However, challenges have arisen in the process of securing public safety at sea due to factors such as the increasing population engaged in water leisure activities. These challenges include unauthorized entry of vessels into controlled areas, unauthorized access by water leisure activity participants, and non-compliance with regulations. In this paper, we employed the Delphi/Analytic Hierarchy Process to survey 22 experts, including professionals in launch vehicle development and launch site operation, to identify 10 factors posing threats to maritime public safety. Additionally, we identified five issues that need improvement for ensuring maritime safety. This study verified the consistency of expert opinions and conducted an analysis of importance and prioritization, objectively confirming the necessity for amendments to relevant laws or the enactment of new laws concerning the establishment and control of danger zones around launch sites.