• Title/Summary/Keyword: 발달 유동

Search Result 378, Processing Time 0.024 seconds

Fracture Characteristics in Geologic Media for Groundwater Flow : Review (암반의 지하수유동해석을 위한 지하매질의 열극특성 개념에 대한 고찰)

  • 배대석;송무영
    • The Journal of Engineering Geology
    • /
    • v.5 no.2
    • /
    • pp.201-213
    • /
    • 1995
  • Understanding of the fracture processes in rock mass for hydrogeology necessitates such information as fracture mechanics including genesis, propagation, termination, and the relation of fracture distribution to geologic structures and fracture modelling, etc. A current status of information on fracture for groundwater flow in rock mass, however, is very paucity except on a few special fields throughout the world. The desired and reasonable approach method in the evaluation on the groundwater flow in fractured rock mass must be based on the thorough understanding of fracture processes and a simplified model representing fracture properties which would be met to natural conditions for the interpretation and prediction.

  • PDF

Experimental Studies on Single Phase Flow and Heat Transfer in Microchannels (미세유로의 단상 유동 및 열전달에 대한 실험적 연구)

  • Kim, Byong-Joo;Kim, Geon-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.12
    • /
    • pp.795-801
    • /
    • 2008
  • An experimental study has been performed on the single phase flow and convective heat transfer in trapezoidal microchannels. The microchannel was about $270{\mu}m$ wide, $800{\mu}m$ deep. and 7 mm long, which might ensure hydrodynamically fully-developed laminar flow at a low Reynolds number. The experiments were conducted with R1l3 and water, with the Reynolds number ranging from approximately 30 to 5000 for friction factor and 30 to 700 for the Nusselt number. Friction factors in laminar are found to be in good agreement with the predictions of existing correlation suggesting that a conventional analysis approach can be employed in predicting flow friction behavior in microchannels. However turbulent friction factors are hardly predictable by the existing correlations. The experimental results show that the Nusselt number is not a constant but increases almost linearly with the Reynolds number even the flow is fully developed (Re < 100). The dependence of the Nusslet number on the Reynolds number is contradictory to the conventional theory. At a Reynolds number greater than 100, the Nusselt number increases slowly with the Reynolds number, where thennally developing flow is responsible for the increase of the Nusselt number with the Reynolds number.

Study of Supersonic Jet Impinging on a Jet Deflector (제트 편향기에 충돌하는 초음속 제트에 관한 연구)

  • 이택상;정조순;신완순;박종호;김윤곤
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.3
    • /
    • pp.10-18
    • /
    • 2001
  • In this paper, Supersonic jets impinging on a wedge were investigated in order to acquire fundamental design data for jet deflectors. Surface pressure distributions and pressure contours were obtained using a cold flow tester producing Mach 2 supersonic jets. Schlieren system was used to visualize the flow structure on the wedge surface. Numerical computations were performed and compared with the experimental results. Both results were in good agreement. The results showed that underexpansion ratio did not affect on the surface pressure distribution when the wedge is located at the nozzle exit. With increasing underexpansion ratio, pressure recovery decreased as the wedge is located farther from the nozzle exit. In the pressure contour, it was possible to locate the region where the peak pressure on the wedge surface was occurred.

  • PDF

Flow and Heat Transfer Characteristics of Acoustically Excited Axisymmetric Impinging Jet (음향여기된 축대칭 충돌제트의 유동 및 열전달 특성)

  • 조형희;이창호
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.8-9
    • /
    • 1997
  • 산업의 발달과 환경에 대한 관심이 높아짐에 따라 고효율, 저공해인 가스터빈의 응용범위가 넓어지고 있는 추세이다. 가스터빈 기관의 효율을 높이기 위해서는 터빈 입구온도를 높이는 것이 필수적인데 이는 재질에 의해 제한 받게 되고 이 때문에 효과적인 냉각방법의 필요성이 대두되었다 충돌제트는 국소적으로 높은 열/물질 전달 효과를 얻을 수 있어서 터빈 블레이드 냉각과 연소기 벽면 냉각에 효과적으로 응용 될 수 있다. 이러한 충돌제트의 냉각효과는 제트출구의 초기조건에 매우 민감한데 Kelvin-Helmholts 불안정은 불안정한 자유전단층에서 자연적인 와류생성(roll up)과 개개의 와류고리 형성의 원인이 되고 이 고리의 성장과 병합(pairing)은 제트의 유동특성에 상당히 영향을 미친다. 제트주위에 생성되는 이러한 와류에 의해 제트중심에서 속도와 난류강도가 변하게 된다. 이러한 제트초기의 불안정성은 하류에서의 와류성장에 영향을 끼치기 때문에 와류의 조절에 의한 충돌 면에의 열 전달 효과 상승을 기대할 수 있다. 이 조절방법은 크게 두 가지로 나눌 수 있는데 하나는 제트주의 환형관에 이차유동을 가하여 와류를 직접 제어함으로써 자유전단류(free shear layer flow)의 안정성 원리를 이용하여 열 전달을 촉진하는 것이고 다른 하나는 음향여기(acoustic exitation)를 사용하여 제트주위의 와류형성을 조절하는 것인데, 자연적으로 형성되는 와류의 주파수(와류의 고유주파수)나 부조화 주파수(subharmonic)로 음향여기 시키는 경우 제트 주위 와류는 더욱 증폭되고 그렇지 않은 경우 제트주위 와류의 형성이 억제되어 더 긴 제트코어의 길이 및 제트코어 주위에서 작은 크기의 와류들이 형성된다.

  • PDF

A Study on the Characteristics of Liquid Jet in Crossflows Using Elliptical Nozzles (타원형 노즐을 이용한 횡단류 유동에서 액체제트 특성 연구)

  • Song, Yoonho;Hwang, Donghyun;Ahn, Kyubok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.320-324
    • /
    • 2017
  • Effect of elliptical orifice on the spray characteristics of liquid jet ejecting into subsonic crossflows were experimentally studied. Circular/elliptical plain-orifice injectors, which had different ratios of the orifice length to diameter and major axis to minor axis, were used for transverse injection. Compared with the previous research, breakup lengths of elliptical nozzles are shorter than circular nozzles at all experimental condition. Cavitation/hydraulic flip are considered as a reduction in the breakup length at all circular/elliptical nozzle. In the case of liquid column trajectories, major axis which was placed to the crossflows, increases the frontal area of the liquid column exposed to the crossflows. Hence, the aerodynamic force exerted on the jet is increased and the penetration depth is reduced.

  • PDF

Characteristic of flow pattern and Particle Suspension in a Bottom Baffled Agitated Vessel (교반조 바닥의 방해판이 유동특성 및 입자부유에 미치는 특성)

  • Lee, Young-Sei
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1549-1554
    • /
    • 2015
  • This study examined experimentally the characteristics of the flow pattern and particle suspension in an agitated vessel with a bottom baffle. A flow pattern of the particles was shown to increase the upward flow from the center of the agitated vessel bottom. The suspended particles from the experiment found that the particle suspension was promoted by the development of an Ekman boundary layer. The optimal conditions of the impeller, and the agitated vessel bottom baffle within the experimental range were as follows: Impeller, $n_p=6$, d/D=0.5, and b/d=0.3; and bottom baffle, $n_b=6$, $d_b/D=0.5$ and $b_w/D=0.05$.

Analysis on Turbulent Scalar Field in a Channel with Wall Injection using LES Technique (LES기법을 이용한 벽면 분출이 있는 채널 내부의 난류 유동 및 스칼라장 특성 해석)

  • Na, Yang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.2
    • /
    • pp.54-63
    • /
    • 2009
  • Large eddy simulation was conducted for flow development in a chamber with wall injection which simulates the cold flow in an idealized hybrid rocket motor. It was found that a peculiar timescale, roughly corresponding to St~0.5, resides in the flowfield resulting from the interaction between the main oxidizer and wall injected flows. However, the fact that this time characteristics is absent in the temperature field in the vicinity of the wall indicates that even a small regression rate renders the passive scalar, such as temperature, dissimilar to the velocity field. This implies that a classical approach, which assumes that constant turbulent Prandtl number, should be replaced by a more sophisticated turbulence models to accurately predict the temperature field in the hybrid motor.

Effect of Nozzle Initial and Exit Wall Angles on Supersonic Flow Field in a Thrust Optimized Nozzle (추력이 최적화된 노즐의 초음속 유동에 대한 노즐벽 초기 및 출구각도의 영향)

  • Jeon, Tae Jun;Park, Tae Seon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.3
    • /
    • pp.1-13
    • /
    • 2021
  • Effects of the nozzle wall angles on the supersonic flow field in a thrust optimized nozzle were numerically investigated. The combustor and operating condition of 30-tonf rocket engine was selected to study the optimum nozzle shape. The nozzle flow of combustion products was realized by the shifting equilibrium calculation for the propellant of kerosene-LOx. The change of nozzle wall angles induced different developing patterns of the internal and secondary shock wave. The optimum nozzle was obtained when the internal shock was in a specific position at the nozzle outlet. The nozzle wall angles of the optimum nozzle were very similar to those of the optimum nozzle which does not consider the shock wave.

A Dye Tracer Study of Infiltration Pattern in a Residual Soil Developed from Granite (화강암 기원 잔적토양에서 염료추적자의 침투 유형에 관한 연구)

  • 전철민;김재곤;이진수;김탁현
    • Economic and Environmental Geology
    • /
    • v.37 no.4
    • /
    • pp.383-389
    • /
    • 2004
  • Understanding flow pattern of water and solute in subsurface is essential for the reduction and prevention of contamination of soil and groundwater and for the investigation and remediation of contaminated site. The objective of this study is to examine the infiltration pattern in a soil developed from the Jurassic granite using (Brilliant Blue FCF $C_{37}H_{34}N_{2}Na_{2}O_{9}S_{3}$), the nonfluorescent and nontoxic food dye. All image processing was conducted using geographic image processing software, ER Mapper, Version 6.2. The dye coverage was determined by counting the stained pixels in the photographs (80${\times}$80cm, 80TEX>${\times}$5cm) for the vertical and horizontal view. A homogeneous matrix flow occurred in the A horizon with weak, medium granular structure and fingering at the interface of finer-textured A horizon and coarser-textured C horizon. Pegmatitic vein originated from the granite and plant root in C horizon induced preferential flow.

Influence of Inlet Secondary Curvature on Hemodynamics in Subject-Specific Model of Carotid Bifurcations (환자 특정 경동맥 분기부 모델 혈류유동에 대한 입구부 이차곡률의 영향)

  • Lee, Sang-Wook
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.5
    • /
    • pp.479-486
    • /
    • 2011
  • In image-based CFD modeling of carotid bifurcation hemodynamics, it is often not possible (or at least not convenient) to impose measured velocity profiles at the common carotid artery inlet. Instead, fully-developed velocity profiles are usually imposed based on measured flow rates. However, some studies reported a pronounced influence of inflow boundary conditions that were based on actual velocity profiles measured by magnetic resonance imaging which showing the unusual presence of a high velocity band in the middle of the vessel during early diastole inconsistent with a Dean-type velocity profile. We demonstrated that those velocity profiles were induced by the presence of modest secondary curvature of the inlet and set about to test whether such more "realistic" velocity profiles might indeed have a more pronounced influence on the carotid bifurcation hemodynamics. We found that inlet boundary condition with axisymmetric fully-developed velocity profile(Womersley flow) is reasonable as long as sufficient CCA inlet length of realistic geometry is applied.