Browse > Article

Influence of Inlet Secondary Curvature on Hemodynamics in Subject-Specific Model of Carotid Bifurcations  

Lee, Sang-Wook (School of Mechanical Engineering, University of Ulsan)
Publication Information
Abstract
In image-based CFD modeling of carotid bifurcation hemodynamics, it is often not possible (or at least not convenient) to impose measured velocity profiles at the common carotid artery inlet. Instead, fully-developed velocity profiles are usually imposed based on measured flow rates. However, some studies reported a pronounced influence of inflow boundary conditions that were based on actual velocity profiles measured by magnetic resonance imaging which showing the unusual presence of a high velocity band in the middle of the vessel during early diastole inconsistent with a Dean-type velocity profile. We demonstrated that those velocity profiles were induced by the presence of modest secondary curvature of the inlet and set about to test whether such more "realistic" velocity profiles might indeed have a more pronounced influence on the carotid bifurcation hemodynamics. We found that inlet boundary condition with axisymmetric fully-developed velocity profile(Womersley flow) is reasonable as long as sufficient CCA inlet length of realistic geometry is applied.
Keywords
Hemodynamics; Carotid Bifurcation; Secondary Curvature; Inlet Boundary Condition; Wall Shear Stress; Computational Fluid Dynamics; Magnetic Resonance Imaging;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. K. Wake, J. Oshinski, A. R. Tannenbaum and D. P. Giddens, "Choice of in vivo versus idealized velocity boundary conditions influences physiologically relevant flow patterns in a subject-specific simulation of flow in the human carotid bifurcation," Journal of Biomechanical Engineering, Vol. 131, No. 2, pp. 021013 (2009)   DOI   ScienceOn
2 J. G. Myers, J. A. Moore, M. Ojha, K. W. Johnston and C. R. Ethier, "Factors influencing blood flow patterns in the human right coronary artery," Annals of Biomedical Engineering, Vol. 29, No. 2, pp. 109-120 (2001)   DOI
3 J. B. Thomas, J. S. Milner, B. K. Rutt and D. Steinman "Reproducibility of image-based computational fluid dynamics models of the human carotid bifurcation," Annals of Biomedical Engineering, Vol. 31, No. 2, pp. 132-141 (2003)   DOI
4 C. Ethier, S. Prakash, D. Steinman, R. Leask, G. Couch and M. Ojha, "Steady flow separation patterns in a 45 degree junction," Journal of Fluid Mechanics, Vol. 411, pp. 1-38 (1999)
5 P. Minev and C. Ethier, "A characteristic/finite element algorithm for the 3-D navier-stokes equations using unstructured grids," Comp. Meth. App. Mech. Eng., Vol. 178, No. 1-2, pp. 39-50 (1998)   DOI   ScienceOn
6 M. D. Ford, Y. J. Xie, B. A. Wasserman and D. A. Steinman, "Is flow in the common carotid artery fully-developed?," Physiological Measurement, Vol. 29, No. 11, pp. 1335-1349 (2008)   DOI   ScienceOn
7 L. Goubergrits, K. Affeld, J. Fernandez-Britto and L. Falcon, "Geometry of the human common carotid artery. A vessel cast study of 86 specimens," Pathology Research and Practice, Vol. 198, pp. 543-551 (2002)   DOI   ScienceOn
8 B. M. Johnston and P. R. Johnston, "The relative effects of arterial curvature and lumen diameter on wall shear stress distributions in human right coronary arteries," Physics in medicine and biology, Vol. 52, pp. 2531-2544 (2007)   DOI   ScienceOn
9 S.-W. Lee, L. Antiga and D. A. Steinman, "Correlations among indicators of disturbed flow at the normal carotid bifurcation," Journal of Biomechanical Engineering, Vol. 131, No. 6, pp. 061013 (2009)   DOI   ScienceOn
10 L. Antiga and D. A. Steinman, "Robust and objective decomposition and mapping of bifurcating vessels," IEEE Transaction of Medical Imaging, Vol. 23, pp. 704-713 (2004)   DOI   ScienceOn
11 A. M. Malek and S. L. Alper, "Hemodynamic shear stress and its role in atherosclerosis," JAMA, Vol. 282, No. 21, pp. 2035-2042 (1999)   DOI   ScienceOn
12 D. N. Ku, D. P. Giddens, C. K. Zarins and S. Glagov, "Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress," Arteriosclerosis, Vol. 5, No. 3, pp. 293-302 (1985)   DOI
13 C. K. Zarins, D. P. Giddens, B. K. Bharadvaj, V. S. Sottiurai, R. F. Mabon and S. Glagov, "Carotid bifurcation atherosclerosis. quantitative correlation of plaque localization with flow velocity profiles and wall shear stress," Circulation Research, Vol. 53, No. 4, pp. 502-514 (1983)   DOI   ScienceOn
14 J. S. Milner, J. A. Moore, B. K. Rutt and D. A. Steinman, "Hemodynamics of human carotid artery bifurcations: Computational studies with models reconstructed from magnetic resonance imaging of normal subjects," Journal fo Vascular Surgery, Vol. 28, No. 1, pp. 143-156 (1998)   DOI   ScienceOn
15 Q. Long, X. Y. Xu, B. Ariff, S. A. Thom, A. D. Hughes and A. V. Stanton, "Reconstruction of blood flow patterns in a human carotid bifurcation: A combined CFD and MRI study," Journal of Magnetic Resonance Imaging, Vol. 11, No. 3, pp. 299-311 (2000)   DOI   ScienceOn
16 D. A. Steinman, "Image-based computational fluid dynamics: a new paradigm for monitoring hemodynamics and atherosclerosis," Curr Drug Targets Cardiovasc Haematol Disord, Vol. 4, No. 2, pp. 183-197 (2004)   DOI   ScienceOn
17 A. K. Wake, "Modeling fluid mechanics in individual human carotid arteries," PhD Thesis, Georgia Institute of Technology (2005)
18 I. Marshall, S. Zhao, P. Papathanasopoulou, P. Hoskins and Y. Xu, "MRI and CFD studies of pulsatile flow in healthy and stenosed carotid bifurcation models," Journal of Biomechanics, Vol. 37, No. 5, pp. 679-687 (2004)   DOI   ScienceOn
19 K. R. Moyle, L. Antiga and D. A. Steinman, "Inlet conditions for image-based CFD models of the carotid bifurcation: is it reasonable to assume fully developed flow?," Journal of Biomechanical Engineerng, Vol. 128, No. 3, pp. 371-379 (2006)   DOI   ScienceOn