• Title/Summary/Keyword: 발광소자

Search Result 939, Processing Time 0.026 seconds

Built-in voltage depending on electrode in organic light-emitting diodes (전극 변화에 따른 유기 발광 소자의 내장 전압)

  • Yoon, Hee-Myoung;Lee, Eun-Hye;Lee, Won-Jae;Chung, Dong-Hoe;Oh, Young-Cheul;Kim, Tae-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04b
    • /
    • pp.14-16
    • /
    • 2008
  • Built-in voltage in organic light-emitting diodes was studied using modulated photocurrent technique ambient conditions. From the bias voltage-dependent photocurrent, built-in voltage of the device is determined. The applied bias voltage when the magnitude of modulated photocurrent is zero corresponds to a built-in voltage. Built-in voltage in the device is generated due to a difference of work function of the anode and cathode. A device was made with a structure of anode/$Alq_3$/cathode to study a built-in voltage. ITO was used as an anode, and Al and LiAl were used as a cathode. A layer thickness of Al and LiAl were 100nm. Obtained built-in voltage is about 1.0V in the Al layer was used as a cathode. The obatined built-in voltage is about 1.6V in the LiAl layer was used as a cathode. The result of built-in voltage is dependent of cathode. We can see that the built-in voltage increase up to 0.4V when the LiAl layer was used as the cathode. These results correspond to the work function of LiAl which is lower than that of Al. As a result, the barrier height for an electron injection from the cathode to the organic layer could be lowered when the LiAl was used as a cathode.

  • PDF

Thermal Characteristics of the design on Residential 13.5W COB LED Down Light Heat Sink (주거용 13.5W COB LED 다운라이트 방열판 설계에 따른 열적 특성 분석)

  • Kwon, Jae-hyun;Lee, Jun-myung;Kim, Hyo-jun;Kang, Eun-young;Park, Keon-jun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.1
    • /
    • pp.20-25
    • /
    • 2014
  • There are several severe problems for LED device, the next generation's economy green lighting: as the temperature increases, the lamp efficiency decreases; if the temperature is over $80^{\circ}C$, the lifetime of lighting decreases; Red Shift phenomenon that wavelength of spectrum line moves toward long wavelength occurs; and optical power decreases as $T_j$ increases. Thus, Heat sink design that can minimize the heat of LED device is currently in progress. While the thermal resistance of COB Type LED was reduced by direct coupling of LED chip to the board, residential 13.5W requires Heat sink in order resolve heat issue. This study designed Heat Sink suitable for residential 13.5W COB LED down-light and selected the optimum Fin thickness through flow simulation that packaged the designed Heat Sink and 13.5W COB. And finally it analyzed and evaluated the thermal modes using contacting thermometer.

Characteristics of organic electroluminescent devices having buffer layers (Buffer층을 가진 유기 전기 발광 소자의 특성)

  • 이호식;고삼일;정택균;이원재;김태완;강도열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.399-402
    • /
    • 1998
  • Electroluminescent(EL) devices based on organic thin films have attracted lots of interests in large-area light-emitting display. One of the problems of such device is a lifetime, where a degradation of the cell is possibly due to an organic layers thickness, morphology and interface with electrode. In this study, light-omitting organic electroluminescent devices were fabricated using Alq$_3$(8-hydroxyquinolinate aluminum) and TPD(N,N'-diphenyl-N,N'-bis(3-methylphenyl(1-1\`-biphenyl]-4,4'-diamine). Where Alq$_3$ is an electron-transport and emissive layer, TPD is a hole-transport layer. The cell structure is ITO/TPD/Alq$_3$/Al and the cell is fabricated by vacuum evaporation method. In a measurement of current-voltage characteristics, we obtained a turn-on voltage at about 9 V. We also investigated stability of the devices using buffer layer with blend of PEI (Poly ether imide) and TPD by varying mot ratios between ITO and Alq$_3$. In current-voltage characteristics measurement, we obtained the turn-on voltage at about 6 V and observed an anomalous behavior at 3∼4 V. And we used other buffer layer of PEDT(3,4-pyrazino-3',4'-ethylenedithio-2,2',5,5'-tetrathiafulvalenium) with ITO/PEDT/TPD/Alq$_3$Al structure. We observed a surface morphology by AFM(Atomic Force Microscopy), UV/visible absorption spectrum, and PL(Photoluminescence) spectrum. We obtained the UV/visible absorption peak at 358nm in TPD and at 359nm in Alq$_3$, and the PL peaks at 410nm in TPD and at 510nm in Alq$_3$. We also studied EL spectrum in the cell structure of ITO/(TPD+PEI)/Alq$_3$/Al.

  • PDF

Improved Thermal Resistance of an LED Package Interfaced with an Epoxy Composite of Diamond Powder Suspended in H2O2 (과산화수소 적용 TIM의 LED 패키지 열특성 개선효과)

  • Choi, Bong-Man;Hong, Seong-Hun;Jeong, Yong-Beom;Kim, Ki-Bo;Lee, Seung-Gol;Park, Se-Geun;O, Beom-Hoan
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.4
    • /
    • pp.221-224
    • /
    • 2014
  • We present a method for manufacturing a TIM used for packaging a high-power LED. In this method a mixture of diamond powder and hydrogen peroxide is used as a filler epoxy. The thermal resistance of the TIM with hydrogen peroxide was improved by about 30% over the thermal resistance of the TIM without hydrogen peroxide. We demonstrate that as a result the heat generated from the chip is easily dissipated through the TIM.

Fabrication and Characterization of High Efficiency Green PhOLEDs with [TCTA-TAZ] : Ir(ppy)3 Double Emission Layers ([TCTA-TAZ] : Ir(ppy)3 이중 발광층을 갖는 고효율 녹색 인광소자의 제작과 특성 평가)

  • Shin, Sang-Baie;Shin, Hyun-Kwan;Kim, Won-Ki;Jang, Ji-Geun
    • Korean Journal of Materials Research
    • /
    • v.18 no.4
    • /
    • pp.199-203
    • /
    • 2008
  • High-efficiency phosphorescent organic light emitting diodes using TCTA-TAZ as a double host and $Ir(ppy)_3$ as a dopant were fabricated and their electro-luminescence properties were evaluated. The fabricated devices have the multi-layered organic structure of 2-TNATA/NPB/(TCTA-TAZ) : $Ir(ppy)_3$/BCP/SFC137 between an anode of ITO and a cathode of LiF/AL. In the device structure, 2-TNATA[4,4',4"-tris(2-naphthylphenyl-phenylamino)-triphenylamine] and NPB[N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine] were used as a hole injection layer and a hole transport layer, respectively. BCP [2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline] was introduced as a hole blocking layer and an electron transport layer, respectively. TCTA [4,4',4"-tris(N-carbazolyl)-triphenylamine] and TAZ [3-phenyl-4-(1-naphthyl)-5-phenyl-1,2,4-triazole] were sequentially deposited, forming a double host doped with $Ir(ppy)_3$ in the [TCTA-TAZ] : $Ir(ppy)_3$ region. Among devices with different thickness combinations of TCTA ($50\;{\AA}-200\;{\AA}$) and TAZ ($100\;{\AA}-250\;{\AA}$) within the confines of the total host thickness of $300\;{\AA}$ and an $Ir(ppy)_3$-doping concentration of 7%, the best electroluminescence characteristics were obtained in a device with $100\;{\AA}$-think TCTA and $200\;{\AA}$-thick TAZ. The $Ir(ppy)_3$ concentration in the doping range of 4%-10% in devices with an emissive layer of [TCTA ($100\;{\AA}$)-TAZ ($200\;{\AA}$)] : $Ir(ppy)_3$ gave rise to little difference in the luminance and current efficiency.

High Efficiency Blue Organic Light-Emitting Diode with Three Organic Layer Structure (3-유기층 구조를 갖는 고효율 청색 유기발광소자)

  • Jang, Ji Geun;Ji, Hyun Jin;Kim, Hyun;Kim, Jae Min
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.3
    • /
    • pp.33-37
    • /
    • 2012
  • Simple and high efficiency blue organic light-emitting diodes with three organic layers of N, N'-diphenyl-N,N'-bis-[4-(phenyl-m-tolylamino)-phenyl]-biphenyl-4,4'-diamine[DNTPD]/1,1-bis-(di-4-polya-minophenyl)cyclohexane[TAPC]/electron transport material [ET-137] were fabricated and their electroluminescent characteristics were evaluated according to the TAPC thickness variation in a range of $50{\sim}300{\AA}$. Electroluminescence spectra of the devices with structure of DNTPD/TAPC/ET-137 showed all the same central emission wavelengths of 455 nm under an applied voltage of 7V, which were similar with that of the device with ET-137 only. On the other hand, the electroluminescence spectra of the device with structure of DNTPD/ET-137 without TAPC layer showed double emission peaks at the wavelengths of 455 nm and 561 nm under an applied voltage of 7V. In the devices with structure of DNTPD/TAPC/ET-137, single peak blue emission was not maintained in the device with $50{\AA}$-thick TAPC above 8V by the formation of exciplex. In the device with $300{\AA}$-thick TAPC, however, single peak blue emission was maintained until 10 V. According to the thickness increase of TAPC in the fabricated devices, the current density and luminance decreased, but the luminous efficiency and roll-off characteristics were improved.

Development of Blue Organic Light-emitting Diodes(OLEDs) Due to Change in Mixed Ratio of HTL:EML(DPVBi:NPB) Layers (HTL:EML(DPVBi:NPB)층의 조성비 변화에 따른 청색 유기 발광 소자 개발)

  • Lee, Tae-Sung;Lee, Byoung-Wook;Hong, Chin-Soo;Kim, Chang-Kyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.9
    • /
    • pp.853-858
    • /
    • 2008
  • The structure of organic light-emitting diodes(OLEDs) with typical heterostructure consists of anode, hole injection layer, hole transport layer, light-emitting layer, electron transport layer, electron injection layer, and cathode. 4,4bis[N-(1-napthyl)-N-phenyl-amino]-biphenyl(NPB) used as a hole transport layer and 4'4-bis(2,2'-diphenyl vinyl)-1,1'-biphenyl(DPVBi) used as a blue light emitting layer were graded-mixed at selected ratio. Interface at heterojunction between the hole transport layer and the elecrtron transport layer restricts carrier's transfer. Mixing of the hole transport layer and the emitting layer reduces abrupt interface between the hole transport layer and the electron transport layer. The operating voltage of OLED devices with graded mixed-layer structure is 2.8 V at 1 $cd/m^2$ which is significantly lower than that of OLED device with typical heterostructure. The luminance of OLED devices with graded mixed-layer structure is 21,000 $cd/m^2$ , which is much higher than that of OLED device with typical heterostructure. This indicates that the graded mixed-layer enhances the movement of carriers by reducing the discontinuity of highest occupied molecular orbital(HOMO) of the interface between hole transport layer and emitting layer.

Design and Evaluation of Intelligent Helmet Display System (지능형 헬멧시현시스템 설계 및 시험평가)

  • Hwang, Sang-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.5
    • /
    • pp.417-428
    • /
    • 2017
  • In this paper, we describe the architectural design, unit component hardware design and core software design(Helmet Pose Tracking Software and Terrain Elevation Data Correction Software) of IHDS(Intelligent Helmet Display System), and describe the results of unit test and integration test. According to the trend of the latest helmet display system, the specifications which includes 3D map display, FLIR(Forward Looking Infra-Red) display, hybrid helmet pose tracking, visor reflection type of binocular optical system, NVC(Night Vision Camera) display, lightweight composite helmet shell were applied to the design. Especially, we proposed unique design concepts such as the automatic correction of altitude error of 3D map data, high precision image registration, multi-color lighting optical system, transmissive image emitting surface using diffraction optical element, tracking camera minimizing latency time of helmet pose estimation and air pockets for helmet fixation on head. After completing the prototype of all system components, unit tests and system integration tests were performed to verify the functions and performance.

Optical and structural properties of ZnMgO thin films by RF co-sputtering (RF magnetron sputtering으로 성장된 ZnMgO박막의 구조적, 광학적 특성 분석)

  • Kang, Si-Woo;Kim, Young-Yi;Ahn, Cheol-Hyoun;Cho, Hyung-Koun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.178-178
    • /
    • 2007
  • II-VI의 넓은 밴드갭 (3.37 eV)을 가지는 ZnO는 solar cells, transparent conductive electrodes, ultraviolet light emitters, and chemical sensors 등에 응용되고 있다. 특히 고효율 ZnO계 발광 소자 구현을 위하여 MgO (7.7eV), CdO (2.0eV) 등의 고용을 통한 밴드갭을 엔지니어링 하며, 단파장 영역의 광원을 확보하기 위하여 MgO 첨가를 통한 밴드갭 에너지를 증가시키는 방향으로의 연구가 활발하다. 그러나 ZnO의 wurtzite 구조와 MgO의 rocksalt 구조의 상이한 결정구조로 인하여 Mg의 고용한계는 4 at. %, 4.1 eV 알려져 있다. 본 실험에서는 p-type Si (100), c-sapphire (0002)과 GaN 기판 위에 MgO (99.999 %)와 ZnO (99.999 %) 두가지 타겟을 사용하여 RF co-스퍼터링법으로 ZnMgO 박막을 증착 하였다. 이때 ZnO 타겟의 power 밀도는 고정 시키고 MgO 타겟의 power 밀도를 변화 시키며 Mg의 함량을 조절하여 그에 따른 광학적 구조적 특성의 변화를 연구 하였다. 성장된 ZnMgO 박막은 MgO 타겟의 power 밀도가 증가할 때 Mg의 함량이 10 at. %까지 증가 하며, 그에 따른 표면의 거칠기 및 입계 크기가 감소하며, 박막의 성장속도 또한 감소함을 SEM과 AFM을 통하여 알 수 있었다. XRD를 동하여 ZnMgO 박막의 (0002) peak의 위치는 $34.50^{\circ}{\sim}34.7^{\circ}$로 오른쪽으로 이동하며, c-축으로 성장하였음을 알 수 있다. PL과 UV룰 동하여, Mg의 함량이 증가 할수록 박막의 밴드갭 에너지는 3.2 eV에서 4.1 eV 로 증가하였다.

  • PDF

Built-in voltage in organic light-emitting diodes from the measurement of modulated photocurrent (변조 광전류 측정법을 이용하여 전극 변화에 따른 유기발광소자의 내장 전압)

  • Lee, Eun-Hye;Yoon, Hee-Myoung;Han, Wone-Keun;Kim, Tae-Wan;Ahn, Joon-Ho;Oh, Hyun-Seok;Jang, Kyung-Uk;Chung, Dong-Hoe
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.51-52
    • /
    • 2007
  • Built-in voltage in organic light-emitting diodes was studied using modulated photocurrent technique ambient conditions. From the bias voltage-dependent photocurrent, built-in voltage of the device is determined. The applied bias voltage when the magnitude of modulated photo current is zero corresponds to a built-in voltage. Built-in voltage in the device is generated due to a difference of work function of the anode and cathode. A device was made with a structure of anode/$Alq_3$/cathode to study a built-in voltage. ITO and ITO/PEDOT:PSS were used as an anode, and Al and LiF/AI were used as a cathode. It was found that an incorporation of PEDOT:PSS layer between the ITO and $Alq_3$ increases a built-in voltage by about 0.4V. This is consistent to a difference of a highest occupied energy states of ITO and PEDOT:PSS. This implies that a use of PEDOT:PSS layer in anode improves the efficiency of the device because of a lowering of anode barrier height. With a use bilayer cathode system LiF/Al, it was found that the built-in voltage increases as the LiF layer thickness increases in the thickness range of 0~1nm. For 1nm thick LiF layer, there is a lowering of electron barrier by about 0.2eV with respect to an Al-only device. It indicates that a very thin alkaline metal compound LiF lowers an electron barrier height.

  • PDF