• Title/Summary/Keyword: 반잠수식

Search Result 41, Processing Time 0.018 seconds

A Study on The Behavior of Very Large Floating Structure Using Pneumatic Stabilized Platform (공기안정식 초대형부유구조물의 거동에 관한 연구)

  • Hong, Sang-Hyun;Kwon, Dong-Ho;Lee, Seung-Jun;Lee, Jong-Seh
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.133-136
    • /
    • 2010
  • 공간부족과 해안 매립으로 발생되는 문제점을 해결하기 위하여 초대형부유구조물이 각광 받고 있으며, 대표적인 구조형식으로는 폰톤식과 반잠수식이 있다. 하지만 다양한 환경에 적용하기에는 구조적으로 한계를 가지고 있으며, 이를 극복하기 위해 부유체 하부에 수직으로 결합된 실린더에 공기를 가두어 지지되는 공기안정식 플랫폼이 제안되어졌으나 아직 개념단계에 머무르고 있는 실정이다. 이에 본 연구에서는 공기 안정식 초대형부유구조물의 실린더 내부 공기상태에 따른 안정성을 검토하기 위하여 유체정역학적 관계를 통해 실린더 내부의 공기 복원력 변수를 산정하였으며, 선형파랑하중에 따른 구조물의 응답을 최소화 할 수 있는 변수의 범위를 제시하였다.

  • PDF

The Conceptual Design of Semi-submersible Type Mobile Harbor Using Axiomatic Design Principles (공리설계를 이용한 반잠수식 모바일하버의 개념설계)

  • Lee, Joo-Hee;Yoon, Seong-Jin;Chung, Hyun;Lee, Phill-Seung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.3
    • /
    • pp.189-203
    • /
    • 2010
  • The axiomatic design principles are applied to the conceptual design of semi-submersible type mobile harbor (B1). The process of how the design of mobile harbor is elaborated, evaluated and improved from the very beginning is presented in this paper. The concept of mobile harbor is a functional harbor, which can move to a container ship anchoring out of ports in the deep water to load/unload containers on sea and transfer them to their destination ports. This floating system will innovate the maritime transport and distribution since it will greatly enhance the accessibility of super-sized container ships to existing harbors and harbors without enough infrastructures. Designing a mobile system which can perform the functions of traditional harbors on the floating system requires innovative ideas as well as rigorous validations of each sub systems. In order to enhance the chance of design success, we try to satisfy the design axioms in early stage of conceptual design. We use the zigzagging process for defining Functional Requirements (FR)-Design Parameters (DP) hierarchy due to the complexity of the system. In other words, we decomposed the complexity of the design by FR-DP hierarchy and reduced coupled design logically and systematically. This paper shows applicability of the axiomatic design principles to the field of ocean systems engineering.

Semi-Rig, Introduction of Hole Verification Procedure (Semi- Rig, Hole Verification Procedure 소개)

  • Lee, Seung-hun;Lee, Seung-hun;Kang, Young-gu;Lee, Joon-hyuk
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2017.10a
    • /
    • pp.32-37
    • /
    • 2017
  • Due to the nature of semi-submergible drilling rig, various equipments are arranged in a limited space, and therefore the many types of outfitting holes passing through the hull structure are densely arranged and that is required the detailed structural strength evaluation in terms of ULS and FLS by class or client. Particularly, semi-submergible drilling rig has a variety of global load which affects the structure strength around holes compared to general commercial ship, and its response of stress is also complicated, so it is difficult to carry out the prediction design of structural strength evaluation and reinforcement. In this regard, this paper presents a case study on the evaluation of structural strength for the various holes and large openings of semi-submergible drilling rig conducted by our company, as well as an established hole verification procedure.

  • PDF

Semi-Rig, Anti-condensation design on steel surface in pontoon area (Semi-Rig, Pontoon 구역 표면 결로 예방 설계)

  • Seo, Dong-jae;Park, Sang-un;Noh, Joung-hwan;Shim, Hak-mu
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2017.10a
    • /
    • pp.105-108
    • /
    • 2017
  • Condensation is one of the common issues which we can easily see in everyday life. For example, the surface of glasses with cold water is easily moisturized. This wet surface gives us uncomfortable feeling and is sometimes dangerous because it is slippery. As the safety on working space is one of the most important issue on offshore project, condensation is also important matter to take care of with precaution. Since the bottom of vessel or offshore facility is submersed in the water, the risk of having condensate on the steel surface is getting higher because sea water temperature is normally lower than ambient temperature. And if there is any electric equipment or person working in that space, condensation is normally not allowed. The pontoon of semi-submersible drilling rig is such a space which is submersed, with electric and mechanical equipments and person working periodically. To prevent condensation in pontoon, study was conducted by checking several cases.

  • PDF

A Dynamic Response Analysis of Very Large Offshore Structures in Multi-Directional Irregular Waves (다방향 불규칙파중의 초대형 해양구조물의 동적응답해석)

  • Goo, J.S.;Jo, H.J.;Kim, K.T.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.2
    • /
    • pp.90-103
    • /
    • 1997
  • A numerical procedure is described for predicting the motion and structural responses of the very large floating offshore structures supported by multiple 3-D floating bodies of arbitrary shape in multi-directional irregular waves. The developed numerical approach taking into account of the hydrodynamic interactions among the multiple floating bodies is based on a combination of the 3-D source distribution method, the wave interaction theory, the finite element method and the spectral analysis method to get the significant values of the dynamic responses in the multi-directional irregular waves. The effects of wave interactions and directionality on the dynamic responses of a very large offshore structure, which is semisubmersible ring type, are numerically examined.

  • PDF

Semi-submersible Drilling Rig and Drilling Equipment (반 잠수식 시추선 및 주요장비에 대한 이해)

  • An, Byoung-Ky;Oh, Hyun-Jung
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.86-92
    • /
    • 2012
  • An exploration well is drilled where oil or gas potential is shown by a seismic survey and interpretation. With the advance of drilling technology, most of the easily accessible oil had been developed by the end of the 20th century. To satisfy the ever increasing demand for oil, and bolstered by high oil prices, the major oil companies started to drill in deep water, which requires a deep offshore drilling unit. Offshore drilling units are generally classified by their maximum operating water depth. Many semi-submersible rigs have been purpose-designed for the drilling industry as the allowable drilling water depth has become deeper by the developed technics since the first semi-submersible was launched in 1963. Semi-submersible rigs are commonly used for shallow to deep water up to 3,000 m. Drilling equipment such as a top drive, blowout preventer, drawworks and power system, mud circulation system, and subsea wellhead system are explained to help with an understanding of offshore drilling procedures in the oil and gas fields. The objective of this paper is to introduce the main components of a semi-submersible rig and, by doing so, to raise the awareness of offshore drilling, which accounts for over 30% of the total oil production and will continue to increase.

Risk Based Accidental Limit State Evaluation on Explosion Accident at Shale Shaker Room of Semi-Submersible Drilling Rig (반잠수식 시추선의 Shale Shaker Room 폭발 사고에 대한 위험도 기반 사고한계상태 평가)

  • Yoo, Seung-Jae;Kim, Han-Byul;Park, Jin-Hoo;Won, Sun-Il;Choi, Byung-Ki
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2015.09a
    • /
    • pp.69-73
    • /
    • 2015
  • An evaluation of the accidental limit state (ALS) for design of a semi-submersible drilling rig is one of the essential design requirements as well as ultimate limit state (ULS) and fatigue limit state (FLS). This paper describes the ALS evaluation on the explosion accident at shale shaker room of semi-submersible drilling rig. There are three steps for the ALS evaluation such as structural analysis at concept design, risk based safety design and structural analysis at detailed design. For the ALS evaluation at concept design, conceptual explosion overpressure from the Rule guided by the classification society was used in the structural analysis that was carried out using LS-DYNA. To set up the design accidental load (DAL), explosion analysis was carried out using FLACS taking safety barriers into consideration. Then, the structural analysis was carried out applying DAL for the ALS evaluation at detailed design. Through the ALS evaluation on the explosion at shale shaker room, the importance of the risk based safety design was described.

  • PDF

A Study on the Improvement of National Marine Pollution Response Policy based on the Analysis of Gulf of Mexico Oil Spill Incident (미국 멕시코만 오염사고 분석을 통한 국가방제정책 개선방안 연구)

  • Kim, Sang-Woon;Lim, Chang-Soo;Lee, Wan-Sub;Ha, Chang-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.3
    • /
    • pp.257-264
    • /
    • 2011
  • On April 20, 2010, semi-submersible offshore drilling unit Deepwater Horizon was exploded and sank, and 4.9 million barrels(about 778 thousand tons) of crude oil was spilled into the Gulf of Mexico. As more than one year has been passed since the incident, a lot of investigation reports and lessons learned have been made public and also a lot more will be released soon. This paper studies the final report of the National Commission on "the BP Deepwater Horizon Oil Spill and Offshore Drilling", which was organized by the executive directive of U.S. President Barack Obama, and the interim report of Joint Investigation team of U.S. Coast Guard and BOEMRE of "Report of Investigation into the Circumstances Surrounding the Explosion, Fire, Sinking and Loss of Eleven Members Aboard the Mobile Offshore Drilling Unit Deepwater Horizon". The review is focused on the response to the oil spill. And the paper suggests how to improve national marine pollution response policy. In the paper, the Korean governments is suggested to reinforce the capability for instructing and supervising the responsible party's source control measures, to review how to introduce in-situ burning and vessel of opportunity program into our country, and to continue monitoring on the progress of developments of R&D projects related to oil spill response in the U.S..

Study on the Shape of Appendage for the Reduction of Motion of Floating Wind Turbine Platforms (부유식 풍력 하부구조물의 운동 저감을 위한 부가물 형상 연구)

  • Dae-Won Seo;Jaehyeon Ahn;Jungkeun Oh
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1201-1208
    • /
    • 2022
  • In general, to maximize the supply and efficiency of floating offshore wind power generation energy, the motion caused by wave attenuation of the substructure must be reduced. According to previous studies, the motion response was reduced due to the vortex viscosity generated by the damping plate installed in the lower structure among the waves. In this study, a 5 MW semi-submersible OC5 platform and two platforms with attenuation plates were designed, and free decay experiments and numerical calculations were performed to confirm the effect of reducing motion due to vortex viscosity. As a result of the model test, when the heave free decay tests were conducted at drop heights of 30 mm, 40 mm, and 50 mm, compared with the OC5 platform, the platform with two types of damping plates attached had relatively improved motion damping performance. In the model test and numerical calculation results, the damping plate models, KSNU Plate 1 and KSNU Plate 2, were 1.1 times and 1.3 times lower than OC5, respectively, and the KSNU Plate 2 platform showed about two times better damping performance than OC5. This study shows that the area of the damping plate and the vortex viscosity are closely related to the damping rate of the heave motion.

Offshore Platform Installation Simulation Using Real-Time Maneuvering and Operation Simulator (Real-Time 조종 및 작업 시뮬레이터를 활용한 해양구조물 설치 작업 시뮬레이션)

  • Jonghyeon Lee;Solyoung Han;Dong-Woo Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.1
    • /
    • pp.67-75
    • /
    • 2023
  • In this study, the dynamic characteristics of an offshore platform being installed and physical phenomena are analyzed from the perspective of interaction between operation and maneuvering simulation using a real-time Maneuvering & Operation simulator of Shipbuilding & Marine Simulation Center at Tongmyong University. It was simulated to install the semi-submersible drilling rig moored by 8 mooring lines according to a scenario that is similar to it on the real sea, and 4 tug boats for position keeping of the rig and an offshore support vessel for hook-up of the mooring lines were operated. During the simulation, the motion, trajectory, tension of the objects were output in real time, and they were analyzed at each work procedure. This study about the simultaneous simulation of operation and maneuvering showed the detailed motion of the offshore platform and ships on the operation procedure and the interaction between operation and maneuvering in specific environment condition. Also, it confirmed that the simulation can be utilized to determine the possibility of offshore platform installation in specific situations.