• Title/Summary/Keyword: 반응 표면법

Search Result 1,685, Processing Time 0.033 seconds

Optimal Design of a Washer using a Response Surface Method (반응표면분석법을 이용한 세탁기의 최적설계)

  • Han, Hyeong-Seok;Kim, Tae-Yeong;Park, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.1871-1877
    • /
    • 1999
  • An optimal design method using a response surface method for dynamic characteristics of a washer is presented. The proposed method uses the design of experiment and a computer model is used for the experiment. The value of the cost function is estimated using a computer model for each case of the design variable variation. An orthogonal array is used to obtain best cases to be considered with minimum number of experimentation. Using these experimental values, optimal design is performed using a response surface method. The method used in this paper can be applied to any complicated mechanical systems that can be modelled and analyzed by a computer program. The method is applied to the design of dynamic characteristics of a washer.

Multi-Objective Geometric Optimal Design of a Linear Induction Motor Using Design of Experiments and the Sequential Response Surface Method (실험계획법과 순차적 반응표면법을 이용한 선형 모터의 다중 목적 형상최적설계)

  • Ryu, Tae-Hyung;Yoo, Jeong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.8
    • /
    • pp.726-732
    • /
    • 2009
  • In many industries, the linear motor replaces the existing framework for linear transportation. Similar to other conventional motors, it is important to minimize the ripple of thrust and to maximize the thrust force of the linear motor. Because the two objectives are associated to each other, the multi-objective design process is necessary considering all objectives. This paper intends to optimize geometric parameters of the linear motor with two design objectives using design of experiments and sequential response surface method.

Shape Optimization of DC Solenoid Valve Using Response Surface Method (반응표면법을 이용한 DC솔레노이드 밸브의 형상 최적화)

  • Yoon, Hee-Sung;Hwang, In-Sung;Koh, Chang-Seop;Kim, Dong-Soo;Yun, So-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.687-688
    • /
    • 2006
  • DC솔레노이드 밸브의 성능을 나타내기 위해 여러 가지 중요한 파라메터들이 존재한다. 최소 혹은 최대 스트로크 시의 흡입력, 온도상승, 소비전력 그리고 동작시간 등이 있다. 본 논문에서는 동자시간을 최소화시키기 위해 반응표면법을 이용하여 DC솔레노이드 밸브의 형상 최적화를 수행하였고 그 결과를 유한요소법을 이용하여 검증한다.

  • PDF

A Study of Design for Interior Permanent Magnet Synchronous Motor by using d-q Axis Equivalent Circuit Method (d-q축 등가회로 해석기법을 이용한 180 W급 IPMSM 설계에 관한 연구)

  • Kim, Young-Kyoun
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.2
    • /
    • pp.54-62
    • /
    • 2017
  • This paper presents a design of the Interior Permanent Magnet Synchronous Motor (IPMSM). an initial design process is accomplished by using the parametric design. In the design process, motor characteristics of parameters is computed by the d-q axis equivalent circuit model. Then, an optimal design process is accomplished by combination the experimental design and the response surface method. Finally, the design and analysis results are verified with experimental results.

Investigation of Furfural Yields of Liquid Hydrolyzate during Dilute Acid Pretreatment Process on Quercus Mongolica using Response Surface Methodology (신갈나무 약산 전처리 공정 중 반응표면분석법을 이용한 액상 가수분해물의 furfural 수율 탐색)

  • Ryu, Ga-Hee;Jeong, Han-Seob;Jang, Soo-Kyeong;Hong, Chang-Young;Choi, Joon Weon;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.85-95
    • /
    • 2016
  • In this study, furfural, which is one of the value-added chemicals, was produced from the hydrolyzate of Quercus mongolica using dilute acid pretreatment, and the optimal pretreatment condition was determined by Response Surface Methodology (RSM) to obtain high yield of furfural. Based on Central Composite Design, the pretreatment experiment was designed with parameters such as reaction temperature ($X_1$), acid concentration ($X_2$), and reaction time ($X_3$) as independent variables, while dependent variable was furfural concentration (Y), and furfural yield (Z) was shown as percentage of Y per a dry weight basis. According to results of RSM, it was confirmed that reaction temperature ($X_1$) was the most influence factor and reaction temperature ($X_1$)-acid concentration ($X_2$) was the most significant interaction factor on furfural yield. Also, the optimal condition for the highest furfural yield was predicted at reaction temperature of $184^{\circ}C$, acid concentration of 1.17%, and reaction time of 5 min by RSM, and expected maximum yield of furfural was 6.37%. Experimentally, the maximum yield of furfural produced at above optimal condition was 6.21%, and it was considerably similar with the predicted value, and therefore the model for furfural production from the hydrolyzate of Quercus mongolica during dilute acid pretreatment could be built using RSM.

Optimization of Extraction Process for Total Polyphenols from Angelica Using Response Surface Methodology (반응표면분석법을 이용한 안젤리카로부터 폴리페놀 성분의 추출공정 최적화)

  • Lee, Seung Bum;Park, Bo Ra;Hong, In Kwon
    • Applied Chemistry for Engineering
    • /
    • v.29 no.3
    • /
    • pp.325-329
    • /
    • 2018
  • In this study, polyphenols were extracted from Angelica, which are known to have a high antioxidant content and the extraction process was optimized using the response surface methodology. The extraction yield and the total polyphenols were set as response values for the methodology. Quantitative factors in the extraction process were the extraction time, volume ratio of alcohol/ultrapure water, and extraction temperature. When considering both the main and interaction effects, the greatest influence factor on the extraction yield and total polyphenols was the extraction time. The optimum extraction time and temperature and alcohol/ultrapure water volume ratio for angelica were 2.8 h, $56.6^{\circ}C$ and 64.0 vol% respectively. The extraction yield and total polyphenols when using the conditions were calculated to be 24.6% and 8.76 mg GAE/g. respectively. Determination coefficients of regression equations for the extraction yield and total polyphenols were 81.4 and 75.4%, respectively. Also the overall satisfaction level was found to be 0.80 and the significance was confirmed within 5%.

Optimization of Fluoride Adsorption on Bone Char with Response Surface Methodology (RSM) (반응표면분석법(RSM)을 이용한 골탄의 불소 흡착 조건 최적화)

  • Hwang, Jiyun;Rachana, Chhuon;Dsane, Victory FiiFi;Kim, Junyoung;Choi, Younggyun;Shin, Gwyam
    • Journal of Appropriate Technology
    • /
    • v.5 no.2
    • /
    • pp.82-90
    • /
    • 2019
  • The Box-Benhken Design (BBD) model of response surface methodology (RSM) was used to optimize fluoride adsorption conditions in water using a 350℃ thermally treated cow bone. Water temperature, pH, contact time, and initial fluoride concentration were selected as variables to be optimized. A second order reaction equation was obtained from a Box-Behnken Design DoE experimental matrix of 29 runs. R2 and p-value of the model were 0.9242 and <0.0001, respectively, indicating that the selected variables had a very substantial effect on the adsorption results. The optimized adsorption capacity of the thermally synthesized bone char was estimated to be 6.46 mgF/g at the water temperature of 39.68℃, pH 6.25, contact time of 88.81 minutes and an initial fluorine concentration of 14.64 mgF/L.

Preparation and Reactivity of Cu-Zn-Al Based Hybrid Catalysts for Direct Synthesis of Dimethyl Ether by Physical Mixing and Precipitation Methods (물리혼합 및 침전법에 의한 DME 직접 합성용 Cu-Zn-Al계 혼성촉매의 제조 및 반응특성)

  • Bang, Byoung Man;Park, No-Kuk;Han, Gi Bo;Yoon, Suk Hoon;Lee, Tae Jin
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.566-572
    • /
    • 2007
  • Two hybrid catalysts for the direct synthesis of DME were prepared and the catalytic activity of these catalysts were investigated. The hybrid catalyst for the direct synthesis of DME was composed as the catalytic active components of methanol synthesis and dehydration. The methanol synthesis catalyst was formed from the precursor contained Cu and Zn, the methanol dehydration catalyst was used ${\gamma}-Al_2O_3$. As PM-CZ+D and CP-CZA/D, Two hybrid catalysts were prepared by physical mixing method (PM-CZ+D) and precipitation method (CP-CZA/D), respectively. PM-CZ+D was prepared by physically mixing methanol synthesis catalyst and methanol dehydration catalyst, CP-CZA/D was prepared by depositing Cu-Zn or Cu-Zn-Al components on ${\gamma}-Al_2O_3$. The crystallinity and the surface morphology of synthesized catalyst were analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM) to investigate the physical property of prepared catalyst. And BET surface area by $N_2$ adsorption and the surface area of Cu by $N_2O$ chemisorption were investigated about the hybrid catalysts. In addition, catalytic activity of these hybrid catalysts was examined with varying reaction conditions. At that time, the reaction temperature of $250{\sim}290^{\circ}C$, the reaction pressure of 50~70 atm, the $[H_2]/[CO]$ mole ratio of 0.5~2.0 and the space velocity of $1,500{\sim}6,000h^{-1}$ were investigated the catalytic activity. From these results, it was confirmed that the reactivity of CP-CZA/D was higher than that of PM-CZ+D. When the conditions of reaction temperature, pressure, $[H_2]/[CO]$ ratio and space velocity were $260^{\circ}C$, 50 atm and 1.0, $3,000h^{-1}$ respectively, CO conversion using CP-CZA/D hybrid catalyst was 72% and the CO conversion of CP-CZA/D was more than 20% compared with the CO conversion of PM-CZ+D. It was known that Cu surface area of CP-CZA/D hybrid catalyst was higher than that of hybrid PM-CZ+D catalyst using $N_2O$ chemisorption. It was assumed that the catalytic activity was improved because Cu particle of hybrid catalyst prepared by precipitation method was well dispersed.

저온 플라즈마 및 방전에 의한 섬유의 표면개질과 염색가공에의 반응

  • 협전 등미가
    • Textile Coloration and Finishing
    • /
    • v.7 no.4
    • /
    • pp.105-112
    • /
    • 1995
  • 방전에 의한 섬유의 표면개질 기술로서, 저온 플라즈마, Sputter Etching 처리에 대해 서술하고 표면개질 효과를 표면장력, ESCA, SEM을 근거로해서 고찰하였다. 더우기 접착성, 염색물의 색채에 미치는 효과에 대해 검토하였다. 섬유의 염색가공에 있어 젖음, 발수, 발유, 접착, 대전방지, 광택, 촉감 등의 표면에 관련하는 기능적 혹은 감각적 특성이 중요한 역할을 하고 있다. 섬유재료의 내부(bulk)의 특성을 살리면서 표면특성의 개질에 의해 한층 기능성을 향상시키는 것은 큰 의미를 가지며, 그와 관련한 표면개질 기술의 연구에 관심을 갖게 되었다. 종래에는 오로지 습식법에 의한 화학약품 처리나 그라프트 공중합 등이 많이 이용되어져 왔으나 습식가공법은 공업적으로는, 다량의 물, 유기용제, 색재, 수지, 계면활성제 등을 사용하기 때문에 피처리물의 건조에 필요한 에너지, 배수처리, 유기용제의 회수 등의 문제가 지적되고 있다. 이들 습식계의 문제점을 극복하는 기술로서 최근은 방전처리나 자외선 처리 등의 건식처리가 많이 연구되어 오고 있다.

  • PDF