• Title/Summary/Keyword: 반응 표면법

Search Result 1,687, Processing Time 0.024 seconds

Fabrication and Oxygen Permeation Properties of ${La_{1-x}Sr_{x}B_{1-{\gamma}}Fe_{\gamma}O_{3-{\delta}}$(B=Co, Ga) Perovskite-Type Ceramic Membranes (${La_{1-x}Sr_{x}B_{1-{\gamma}}Fe_{\gamma}O_{3-{\delta}}$(B=Co, Ga) 페롭스카이트 세라믹 분리막의 제조 및 산소투과특성)

  • 임경태;조통래;이기성;한인섭;서두원
    • Membrane Journal
    • /
    • v.11 no.4
    • /
    • pp.143-151
    • /
    • 2001
  • We have fabricated mixed-ionic conducting membranes, L $a_{0.6}$S $r_{0.4}$ $Co_{0.2}$F $e_{0.8}$ $O_{3-}$$\delta$/ and L $a_{0.7}$S $r_{0.3}$G $a_{0.6}$F $e_{0.4}$ $O_{3-}$$\delta$/ by the solid state method. Ceramic membranes consisted of perovskite-type structures and exhibited high relative density, >95%. Especially, dense L $a_{0.6}$S $r_{0.4}$Co $O_{3-}$$\delta$/ layer was coated on the L $a_{0.7}$S $r_{0.3}$G $a_{0.6}$F $e_{0.4}$ $O_{3-}$$\delta$/ membranes by using screen printing technique in order to improve oxygen ion flux. We measured oxygen ion flux on uncoated L $a_{0.6}$S $r_{0.4}$ $Co_{0.2}$F $e_{0.8}$ $O_{3-}$$\delta$/, uncoated L $a_{0.7}$S $r_{0.3}$G $a_{0.6}$F $e_{0.4}$ $O_{3-}$$\delta$/, and coated L $a_{0.7}$S $r_{0.3}$G $a_{0.6}$F $e_{0.4}$ $O_{3-}$$\delta$/ membranes. The L $a_{0.6}$S $r_{0.4}$ $Co_{0.2}$F $e_{0.8}$ $O_{3-}$$\delta$/ membranes showed the highest flux, 0.26 mL/min.$\textrm{cm}^2$ at 90$0^{\circ}C$, after steady state had been reached. The oxygen flux of coated L $a_{0.7}$S $r_{0.3}$G $a_{0.6}$F $e_{0.4}$ $O_{3-}$$\delta$/ membranes showed higher value, 0.19 mL/min.$\textrm{cm}^2$ at 95$0^{\circ}C$. This flux was as much as 2 or 3 times higher than those of uncoated L $a_{0.7}$S $r_{0.3}$G $a_{0.6}$F $e_{0.4}$ $O_{3-}$$\delta$/ membranes. 3-$\delta$/ membranes.X> 3-$\delta$/ membranes.membranes.

  • PDF

An Optimization Study on a Low-temperature De-NOx Catalyst Coated on Metallic Monolith for Steel Plant Applications (제철소 적용을 위한 저온형 금속지지체 탈질 코팅촉매 최적화 연구)

  • Lee, Chul-Ho;Choi, Jae Hyung;Kim, Myeong Soo;Seo, Byeong Han;Kang, Cheul Hui;Lim, Dong-Ha
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.332-340
    • /
    • 2021
  • With the recent reinforcement of emission standards, it is necessary to make efforts to reduce NOx from air pollutant-emitting workplaces. The NOx reduction method mainly used in industrial facilities is selective catalytic reduction (SCR), and the most commercial SCR catalyst is the ceramic honeycomb catalyst. This study was carried out to reduce the NOx emitted from steel plants by applying De-NOx catalyst coated on metallic monolith. The De-NOx catalyst was synthesized through the optimized coating technique, and the coated catalyst was uniformly and strongly adhered onto the surface of the metallic monolith according to the air jet erosion and bending test. Due to the good thermal conductivity of metallic monolith, the De-NOx catalyst coated on metallic monolith showed good De-NOx efficiency at low temperatures (200 ~ 250 ℃). In addition, the optimal amount of catalyst coating on the metallic monolith surface was confirmed for the design of an economical catalyst. Based on these results, the De-NOx catalyst of commercial grade size was tested in a semi-pilot De-NOx performance facility under a simulated gas similar to the exhaust gas emitted from a steel plant. Even at a low temperature (200 ℃), it showed excellent performance satisfying the emission standard (less than 60 ppm). Therefore, the De-NOx catalyst coated metallic monolith has good physical and chemical properties and showed a good De-NOx efficiency even with the minimum amount of catalyst. Additionally, it was possible to compact and downsize the SCR reactor through the application of a high-density cell. Therefore, we suggest that the proposed De-NOx catalyst coated metallic monolith may be a good alternative De-NOx catalyst for industrial uses such as steel plants, thermal power plants, incineration plants ships, and construction machinery.

Biosynthesis of Silver Nanoparticles Using Microorganism (미생물을 이용한 은 나노입자 생합성)

  • Yoo, Ji-Yeon;Jang, Eun-Young;Hong, Chang-Oh;Kim, Keun-Ki;Park, Hyean-Cheal;Lee, Sang-Mong;Kim, Young-Gyun;Son, Hong-Joo
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1354-1360
    • /
    • 2018
  • The aim of this study was to develop a simple, environmentally friendly synthesis of silver nanoparticles (SNPs) without the use of chemical reducing agents by exploiting the extracellular synthesis of SNPs in a culture supernatant of Bacillus thuringiensis CH3. Addition of 5 mM $AgNO_3$ to the culture supernatant at a ratio of 1:1 caused a change in the maximum absorbance at 418 nm corresponding to the surface plasmon resonance of the SNPs. Synthesis of SNPs occurred within 8 hr and reached a maximum at 40-48 hr. The structural characteristics of the synthesized SNPs were investigated by various instrumental analysis. FESEM observations showed the formation of well-dispersed spherical SNPs, and the presence of silver was confirmed by EDS analysis. The X-ray diffraction spectrum indicated that the SNPs had a face-centered cubic crystal lattice. The average SNP size, calculated using DLS, was about 51.3 nm and ranged from 19 to 110 nm. The synthesized SNPs exhibited a broad spectrum of antimicrobial activity against a variety of pathogenic Gram-positive and Gram-negative bacteria and yeasts. The highest antimicrobial activity was observed against C. albicans, a human pathogenic yeast. The FESEM observations determined that the antimicrobial activity of the SNPs was due to destruction of the cell surface, cytoplasmic leakage, and finally cell lysis. This study suggests that B. thuringiensis CH3 is a potential candidate for efficient synthesis of SNPs, and that these SNPs have potential uses in a variety of pharmaceutical applications.

The control of TiO2 nanofiber diameters using fabrication variables in electrospinning method (전기 방사 공정의 제조 변수를 이용한 TiO2 나노섬유의 직경 제어)

  • Yoon, Han-Sol;Kim, Bo-Sung;Kim, Wan-Tae;Na, Kyeong-Han;Lee, Jung-Woo;Yang, Wan-Hee;Park, Dong-Cheol;Choi, Won-Youl
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.1
    • /
    • pp.8-15
    • /
    • 2021
  • TiO2 has been used in various fields such as solar cells, dental implants, and photocatalysis, because it has high physical and chemical stability and is harmless to the body. TiO2 nanofibers which have a large specific surface area also show a good reactivity in bio-friendly products and excellent photocatalysis in air and water purification. To fabricate TiO2 nanofibers, an electrospinning method was used. To observe the diameter of TiO2 nanofibers with fabrication variables, the fabrication variables was divided into precursor composition variables and process variables and microstructure was analyzed. The concentrations of PVP (Polyvinylpyrrolidone) and TTIP (Titanium(IV) isopropoxide) were selected as precursor composition variables, and inflow velocity and voltage were also selected as process variables. Microstructure and crystal structure of TiO2 nanofibers were analyzed using FE-SEM (Field emission scanning electron microscope) and XRD (X-ray diffraction), respectively. As-spun TiO2 nanofibers with an average diameter of about 0.27 ㎛ to 1.31 ㎛ were transformed to anatase TiO2 nanofibers with an average diameter of about 0.22 ㎛ to 0.78 ㎛ after heat treatment of 3 hours at 450℃. Anatase TiO2 nanofibers with an average diameter of 0.22 ㎛ can be expected to improve the photocatalytic properties by increasing the specific surface area. To change the average diameter of TiO2 nanofibers, the control of precursor composition variables such as concentrations of PVP and TTIP is more efficient than the control of electrospinning process variables such as inflow velocity and voltage.

Water Digital Twin for High-tech Electronics Industrial Wastewater Treatment System (II): e-ASM Calibration, Effluent Prediction, Process selection, and Design (첨단 전자산업 폐수처리시설의 Water Digital Twin(II): e-ASM 모델 보정, 수질 예측, 공정 선택과 설계)

  • Heo, SungKu;Jeong, Chanhyeok;Lee, Nahui;Shim, Yerim;Woo, TaeYong;Kim, JeongIn;Yoo, ChangKyoo
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.79-93
    • /
    • 2022
  • In this study, an electronics industrial wastewater activated sludge model (e-ASM) to be used as a Water Digital Twin was calibrated based on real high-tech electronics industrial wastewater treatment measurements from lab-scale and pilot-scale reactors, and examined for its treatment performance, effluent quality prediction, and optimal process selection. For specialized modeling of a high-tech electronics industrial wastewater treatment system, the kinetic parameters of the e-ASM were identified by a sensitivity analysis and calibrated by the multiple response surface method (MRS). The calibrated e-ASM showed a high compatibility of more than 90% with the experimental data from the lab-scale and pilot-scale processes. Four electronics industrial wastewater treatment processes-MLE, A2/O, 4-stage MLE-MBR, and Bardenpo-MBR-were implemented with the proposed Water Digital Twin to compare their removal efficiencies according to various electronics industrial wastewater characteristics. Bardenpo-MBR stably removed more than 90% of the chemical oxygen demand (COD) and showed the highest nitrogen removal efficiency. Furthermore, a high concentration of 1,800 mg L-1 T MAH influent could be 98% removed when the HRT of the Bardenpho-MBR process was more than 3 days. Hence, it is expected that the e-ASM in this study can be used as a Water Digital Twin platform with high compatibility in a variety of situations, including plant optimization, Water AI, and the selection of best available technology (BAT) for a sustainable high-tech electronics industry.

Characterization of CaCO3 Formation Using an Ion Selective Electrode : Effects of the Mg/Ca Ratio and Temperature (이온 선택성 전극을 이용한 탄산칼슘 형성 특성 연구 : 마그네슘-칼슘 비율과 반응 온도의 영향)

  • Misong Han;Byoung-Young Choi;Seung-Woo, Lee;Jinyoung Park;Soochun Chae;Jun-Hwan Bang;Kyungsun Song
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.111-120
    • /
    • 2023
  • The nucleation mechanism was studied using a calcium ion selective electrode (Ca ISE) to observe the formation of CaCO3, a representative mineral in the CO2 cycle, and to analyze the effect of the Mg/Ca-ratio and temperature on the formation of pre-nucleation cluster (PNC) and CaCO3. As a result of the experiment, a small amount of crystal was formed. Energy dispersive X-ray spectroscopy (EDS) was used for surface element analysis, and a field emission scanning-electron microscope (FE-SEM) was used for the morphology analysis of synthesized carbonates. These results showed that various shapes of crystalline CaCO3 (calcite, aragonite, etc.) were observed for each Mg/Ca ratio and temperature. In addition, the calibration plot obtained from Ca ISE showed information on the formation process of CaCO3. Our results showed that as magnesium ions interfered with the binding of calcium and carbonate ions and delayed the aggregation between PNCs, the nucleation and formation of CaCO3 were delayed. On the other hand, the temperature showed an opposite trend as compared to the effect of magnesium under our experimental conditions, indicating that temperature accelerated the formation of CaCO3. Furthermore, the morphology of CaCO3 clearly changed according to the Mg/Ca ratio and temperature, and it was confirmed that the two factors are very important for CaCO3 formation in that they could affect the overall process.

Use of extraction solvent method to monitor the concentrations of acidic polysaccharides and ginsenosides from red and black ginseng (추출용매에 따른 홍삼 및 흑삼의 산성다당체와 진세노사이드 함량 모니터링)

  • Gee Dong Lee
    • Food Science and Preservation
    • /
    • v.30 no.5
    • /
    • pp.857-867
    • /
    • 2023
  • In this study, the extraction yield, acidic polysaccharides and ginsenosides of red and black ginseng were optimized by using the response surface methodology in consideration of the ethanol concentration and temperature of the extraction. The R2 of the model formula for the yield, acidic polysaccharides and ginsenosides was 0.8378-0.9679 (p<0.1). An optimal extraction yield of 5.29% was reached for red ginseng soluble solids when 1.52% ethanol concentration was used at a temperature of 67.27℃. Additionally, the optimal extraction yield for black ginseng soluble solid was 6.11% when 3.12% ethanol concentration was used at a temperature of 66.13℃. Furthermore, the optimal conditions for extracting acidic polysaccharides from red ginseng were using an ethanol concentration of 4.03% at a temperature of 69.61℃; a yield of 1.86 mg/mL was obtained. The optimal extraction yield for acidic polysaccharides from black ginseng was 1.80 mg/mL when extracted using a concentration of 24.67% of ethanol at a temperature of 71.14℃. An optimal extraction yield of 0.22 mg/mL was reached for ginsenoside Rg1 from red ginseng when 79.92% ethanol concentration was used at a temperature of 70.62℃. The optimal extraction yield of ginsenoside Rg3 from black ginseng was 0.31 mg/mL when ethanol was used at a concentration of 75.70% at a temperature of 65.49℃. The ideal extraction conditions for obtaining the maximum yield of both acidic polysaccharide and ginsenoside from red and black ginseng were using ethanol at a concentration between 35 and 50% at an extraction temperature of 70℃.