• Title/Summary/Keyword: 반응 조건 최적화

Search Result 744, Processing Time 0.041 seconds

Optimization of Encapsulation Conditions for Fermented Red Ginseng Extracts by Using Cyclodextrin (Cyclodextrin을 이용한 발효홍삼농축액 최적 포접 조건)

  • Shin, Myung-Gon;Lee, Gyu-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.11
    • /
    • pp.1708-1714
    • /
    • 2015
  • Fermented red ginseng concentrate is known as a healthy food source, whereas it has off-flavor such as bitterness and sour flavor based on fermentation. ${\beta}$- and ${\gamma}$-cyclodextrin (CD) were used to encapsulate the off-flavor of fermented red ginseng concentrate by using response surface methodology design on ${\beta}$- and ${\gamma}-CD$ combination. The reducing effects were analyzed by sensory evaluation for bitter and sour tastes, ginsenoside Rb1, and total acidity. The optimized mixing ratio of ${\beta}$- and ${\gamma}-CD$ for reducing bitterness was the least expected value of 2.07 at ${\beta}-CD$ 3.74% versus the soluble solid content of fermented red ginseng concentrate and the ${\gamma}-CD$ 20.63% mixture. The encapsulation effects of ginsenoside Rb1 were the most expected value of 96.75% at ${\beta}-CD$ 3.47% and ${\gamma}-CD$ 19.89% mixture. The encapsulation effects of sour taste were the least expected value of 5.63 at ${\beta}-CD$ 9.34% and ${\gamma}-CD$ 9.96% mixture. The encapsulation effects of lactic acid were the most expected value of 67.73% at ${\beta}-CD$ 16.0% and ${\gamma}-CD$ 13.18% mixture. Based on encapsulation and each optimized combination, the most effective entrapping ${\beta}$-and ${\gamma}-CD$ combination ratio was ${\beta}-CD$ 10% and ${\gamma}-CD$ 13%.

A Study on Characteristics of Lincomycin Degradation by Optimized TiO2/HAP/Ge Composite using Mixture Analysis (혼합물분석을 통해 최적화된 TiO2/HAP/Ge 촉매를 이용한 Lincomycin 제거특성 연구)

  • Kim, Dongwoo;Chang, Soonwoong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.1
    • /
    • pp.63-68
    • /
    • 2014
  • In this study, it was found that determined the photocatalytic degradation of antibiotics (lincomycin, LM) with various catalyst composite of titanium dioxide ($TiO_2$), hydroxyapatite (HAP) and germanium (Ge) under UV-A irradiation. At first, various type of complex catalysts were investigated to compare the enhanced photocatalytic potential. It was observed that in order to obtain the removal efficiencies were $TiO_2/HAP/Ge$ > $TiO_2/Ge$ > $TiO_2/HAP$. The composition of $TiO_2/HAP/Ge$ using a statistical approach based on mixture analysis design, one of response surface method was investigated. The independent variables of $TiO_2$ ($X_1$), HAP ($X_2$) and Ge ($X_3$) which consisted of 6 condition in each variables was set up to determine the effects on LM ($Y_1$) and TOC ($Y_2$) degradation. Regression analysis on analysis of variance (ANOVA) showed significant p-value (p < 0.05) and high coefficients for determination value ($R^2$ of $Y_1=99.28%$ and $R^2$ of $Y_2=98.91%$). Contour plot and response curve showed that the effects of $TiO_2/HAP/Ge$ composition for LM degradation under UV-A irradiation. And the estimated optimal composition for TOC removal ($Y_2$) were $X_1=0.6913$, $X_2=0.2313$ and $X_3=0.0756$ by coded value. By comparison with actual applications, the experimental results were found to be in good agreement with the model's predictions, with mean results for LM and TOC removal of 99.2% and 49.3%, respectively.

Improvement of Analytical Method for Total Polysaccharides in Aloe vera Gel (알로에 베라(Aloe vera) 겔 중 총 다당체 시험법 개선)

  • Lee, Young-Joo;Kim, Yun-Je;Leem, Dong-Gil;Yoon, Tae-Hyung;Shin, Ji-Eun;Yoon, Chang-Yong;Kim, Jung-Hoon;Park, Mi-Sun;Kang, Tae-Seok;Jeong, Ja-Young
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.3
    • /
    • pp.271-276
    • /
    • 2012
  • This study intented to standardize the method for total polysaccharide, which is a functional marker for aloe vera gel in Korea. We used four lyophilized raw materials and commercial aloe gel products, certified as Health Functional Food by Korea Food and Drug Administration, including powder, solution, jelly, tablet and capsule, to optimize the analytical condition of dialysis and phenol-sulfuric acid reaction in polysaccharide analysis. The optimal conditions for polysaccharide analysis included 1 L water for dialysis and change 3 times for 24hr against 25 mL prepared sample solution. Validation test showed lower than 5% of coefficient of variation(CV) in intra-, interday validation in lyophilized raw materials and 4 types of commercial products. In inter-person and inter-laboratory validation with 4 persons from 4 different laboratories, CV(%) were 5.50 and 6.64 respectively. The linearity of polysaccharide analysis was assessed using 5 serial concentration of lyophilized raw materials(0.1, 0.2, 0.3, 0.4, 0.5%(w/v)). The results showed $R^2{\geq}0.995$ of high linearity. In the commercial aloe vera gel products, the results of reproductivity showed lower than 7.08% and revealed that the standardized method from this study ensured high precision for polysaccharide analysis.

Study on Preparation of High Purity Lithium Hydroxide Powder with 2-step Precipitation Process Using Lithium Carbonate Recovered from Waste LIB Battery (폐리튬이차전지에서 회수한 탄산리튬으로부터 2-step 침전공정을 이용한 고순도 수산화리튬 분말 제조 연구)

  • Joo, Soyeong;Kang, Yubin;Shim, Hyun-Woo;Byun, Suk-Hyun;Kim, Yong Hwan;Lee, Chan-Gi;Kim, Dae-Guen
    • Resources Recycling
    • /
    • v.28 no.5
    • /
    • pp.60-67
    • /
    • 2019
  • A valuable metal recovery from waste resources such as spent rechargeable secondary batteries is of critical issues because of a sharp increase in the amount of waste resources. In this context, it is necessary to research not only recycling waste lithium-ion batteries (LIBs), but also reusing valuable metals (e.g., Li, Co, Ni, Mn etc.) recovered from waste LIBs. In particular, the lithium hydroxide ($LiOH{\cdot}xH_2O$), which is of precursors that can be prepared by the recovery of Li in waste LIBs, can be reused as a catalyst, a carbon dioxide absorbent, and again as a precursor for cathode materials of LIB. However, most studies of recycling the waste LIBs have been focused on the preparation of lithium carbonate with a recovery of Li. Herein, we show the preparation of high purity lithium hydroxide powder along with the precipitation process, and the systematic study to find an optimum condition is also carried out. The lithium carbonate, which is recovered from waste LIBs, was used as starting materials for synthesis of lithium hydroxide. The optimum precipitation conditions for the preparation of LiOH were found as follows: based on stirring, reaction temperature $90^{\circ}C$, reaction time 3 hr, precursor ratio 1:1. To synthesize uniform and high purity lithium hydroxide, 2-step precipitation process was additionally performed, and consequently, high purity $LiOH{\cdot}xH_2O$ powder was obtained.

Optimization for Solid Culture of Phellinus sp. by Response Surface Methodology (반응표면방법에 의한 Phellinus sp. 고체배양의 최적화)

  • Kang, Tae-Su;Kang, An-Seok;Sohn, Hyung-Rac;Kang, Mi-Sun;Lim, Yaung-Iee;Lee, Shin-Young;Jung, Sung-Mo
    • The Korean Journal of Mycology
    • /
    • v.26 no.2 s.85
    • /
    • pp.265-274
    • /
    • 1998
  • This study was carried out to obtain the basic data for an artificial cultivation of Phellinus sp.. The optimum conditions for the mycelial growth on the different sawdusts (Quercus aliena, Morns alba and Alnus japonica) substrate of an isolated Phellinus sp. were optimized by response surface methodology. The ratio of rice bran addition to sawdust and the suitable moisture content for the mycelial growth in the all sawdust media were about 30% (w/w) and $65{\sim}70%$ (w/v), respectively. The initial pHs for the mycelial growth of Quercus aliena and Morns alba were in the range of $pH\;5{\sim}6$, whereas Alnus japonica was obtained at pH 6. The optimum temperature for the mycelial growth was about $25{\sim}30^{\circ}C$, depending on the different kinds of wood substrates. From the response surface analysis, the values of independent variables of Quercus aliena at stationary points were determined to be 31.01 % (w/w) of rice bran, pH of 5.31 and 69.03% (w/v) of moisture content, and the expected value of mycelial growth was about 8.32 cm. Both the ratio of rice bran addition to sawdust $(X_1)$ and moisture content $(X_3)$ were effective to the mycelial growth. In the case of Morns alba, the ratio of rice bran addition to sawdust, initial pH and moisture content at the stationary points were 28.77% (w/w), 5.28 and 69.8 (w/v),respectively, and the expected mycelial growth of 7.60 cm was obtained. Stationary points for the mycelial growth in the sawdust media of Alnus japonica were 28.74% (w/w) of rice bran, pH of 6. 04 and 66.96% (w/v) of moisture content, and the expected values of mycelial growth was about 5.38 cm. Based on the above results, there was correlations between the mycelial growth and independent variables, and the effect of rice bran $(X_1)$ and initial pH $(X_2)$ for the mycelial growth were higher than the moisture content $(X_3)$. The optimum species of sawdust media for the my celial growth of Phellinus sp. was in the order of Quercus aliena > Morns alba > Alnus japonica.

  • PDF

Characterization of Petroleum Hydrocarbon Degradation by a Sphingomonas sp. 3Y Isolated from a Diesel-Contaminated Site. (디젤오염지역에서 분리한 세균 Sphingomonas sp. 3Y의 석유계 탄화수소분해특성)

  • Ahn, Yeong-Hee;Jung, Byung-Gil;Sung, Nak-Chang;Lee, Young-Ok
    • Journal of Life Science
    • /
    • v.19 no.5
    • /
    • pp.659-663
    • /
    • 2009
  • Bacterial stain 3Y was isolated from a site that was contaminated with diesel for more than 15 years. The strain could grow on various petroleum using hydrocarbons as the sole carbon source. The strain grew not only on aliphatic hydrocarbons but also on aromatic hydrocarbons. 3Y grew on aliphatic petroleum hydrocarbons hexane or hexadecane, and aromatic petroleum hydrocarbons BTEX, phenol, biphenyl, or phenanthrene. The strain showed aromatic ring dioxygenase and meta-cleavage dioxygenase activities as determined by tests using indole and catechol. Aromatic ring dioxygenase is involved in the initial step of biodegradation of aromatic hydrocarbons while meta-cleavage dioxygenase catalyzes the cleavage of the benzene ring. Based on a nucleotide sequence analysis of its 16S rRNA gene, 3Y belongs to the genus Sphingomonas. A phylogenetic tress was constructed based on the nucleotide sequences of closest relatives of 3Y and petroleum hydrocarbon degrading sphingomonads. 3Y was in a cluster that was different from the cluster that contained well-known sphingomonads. The results of this study suggest that 3Y has the potential to cleanup oil-contaminated sites. Further investigation is warranted to optimize conditions to degrade petroleum hydrocarbons by the strain to develop a better bioremediation strategy.

The Development of Whitening Cosmetic Ingredient Having Activity of Melanin Degradation (멜라닌 분해능을 지닌 미백용 기능성 화장품원료의 개발)

  • Kang, Whan-Koo;Hwang, Sun-Duk;Kim, Hyoung-Sik;Jeung, Jong-Sik;Lee, Bheong-Uk
    • KSBB Journal
    • /
    • v.22 no.1
    • /
    • pp.7-15
    • /
    • 2007
  • Extensive research was carried out for inhibition of melanin formation as development of whitening cosmetic ingredients. But degradation of melanin itself was not intensively pursued as development of cosmetics. In this study, novel melanin degradation enzyme was developed and characterized. Also this enzyme production process was optimized and formulation was tried using micro encapsulation technique.

Synthesis and Adhesion Properties of UV Curable Acrylic PSAs for Semiconductor Manufacturing Process (반도체 제조 공정용 UV 경화형 아크릴 점착제의 합성과 점착 특성)

  • Lee, Seon Ho;Lee, Sang Keon;Hwang, Taek Sung
    • Applied Chemistry for Engineering
    • /
    • v.24 no.2
    • /
    • pp.148-154
    • /
    • 2013
  • UV curable acryl resin, pressure-sensitive adhesives (PSAs), are used in many different parts in the world. In particular, PSAs has been used in the wafer manufacturing process of semiconductor industry. As wafers become much thinner, UV curable PSAs require more proper adhesion performance. In this study, acrylic PSAs containing hydroxyl groups were synthesized using monomers of 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, styrene monomer and 2-hydroxyethyl acrylate. Isocyanate modified UV curable PSAs were then prepared by the adduct reaction that facilitates the UV curing property via controlling the amount of methacryloyloxyehtyl isocyanate. The proper adhesion performance and UV curing behavior of UV curable PSAs with various hydroxyl values were studied, and experimental conditions were then optimized to raise the efficiency of wafer manufacturing process. It was found that in case of using the equivalent ratio of 1 : 1 isocyanate hardener used in the UV curable PSAs, the peel strength before the UV curing process decreased as the amount of hydroxyl groups increased in the PSAs. The peeling adhesive strength was also decreased with increasing UV dose due to high curing characteristics.

Determination of Formaldehyde in Cosmetics Using a Convenient DNPH Derivatization Procedure Followed by HPLC Analysis (간편한 DNPH 유도체화 HPLC 분석법을 이용한 화장품 중 포름알데하이드 분석)

  • Choi, Jongkeun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.1
    • /
    • pp.65-73
    • /
    • 2016
  • Korea Food and Drug Administration (KFDA) has officially announced 2,4-dinitrophenylhydrazine (DNPH) derivatization - high performance liquid chromatography (HPLC) methods for analysis of formaldehyde. This study was conducted to develop a convenient derivatization method for cosmetics by improving complex pre-treatment procedures included in KFDA method. To simplify pre-treatment procedures of KFDA method, reaction conditions including pH, time and temperature were optimized. This pre-treatment method does not require complicate pre-treatment steps of KFDA method such as pH adjustment of test solution with acetate buffer (pH 5.0), solvent-solvent partitioning with dichloromethane and concentrating procedure with vacuum evaporator. Formaldehyde-dinitrophenylhydrazone (formaldehyde-DNP) product produced by derivatization reaction was separated and quantified with a reversed-phase HPLC, which was slightly modified with KFDA method. The linearity test showed good results with 0.9999 of correlation coefficient ($r^2$) in the range of 2 ~ 40 ppm of standard solutions. In this method, limit of detection (LOD) and limit of quantitation (LOQ) values for formaldehyde were 0.2 ppm and 0.5 ppm, respectively. In addition, recovery test demonstrated that the method was also accurate and reproducible. Therefore, the proposed method can be applicable to rapid analysis of formaldehyde in cosmetics.

Optimization of White Pan Bread Preparation via Addition of Purple Barley Flour and Olive Oil by Response Surface Methodology (자맥가루와 올리브유 첨가 식빵의 제조조건 최적화)

  • Kim, Jin Kon;Kim, Young-Ho;Oh, Jong Chul;Yu, Hyeon Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.12
    • /
    • pp.1813-1822
    • /
    • 2012
  • The purpose of this study was to determine the optimal mixing conditions of two different amounts of purple barley flour ($X_1$), and olive oil ($X_2$) in baking white pan bread. The experiment was designed according to the central composite design of response surface methodology, which showed 10 experimental points including 2 replicates. The more purple barley flour added, the more weight, yellowness (b-value), hardness, gumminess, and chewiness increased; but the more volume, specific loaf volume, lightness (L-value), and springiness decreased. The greater the amount of olive oil added, the more hardness, cohesiveness, gumminess, and chewiness increased; but the more yellowness (b-value) and springiness decreased. The physical and mechanical properties were affected more by the amount of purple barley flour than by the amount of olive oil. Sensory properties except flavor were more affected by the amount of purple barley flour than by the amount of olive oil.