• Title/Summary/Keyword: 반응표면계획법

Search Result 320, Processing Time 0.027 seconds

Optimization of Bleaching Conditions for Stain Removal in Japanese Hackberry (Celtis sinensis Persoon) Using Response Surface Methodology (반응표면분석법을 이용한 팽나무(Celtis sinensis Persoon)의 최적 변색제거조건 결정)

  • Kim, Sung-Hwan;Ra, Jong-Bum
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.191-198
    • /
    • 2010
  • This research was performed to investigate the effect of hydrogen peroxide on the stain removal in japanese hackberry. Response surface method (RSM) was used to optimize the bleaching conditions such as reaction temperature, reaction time and the concentration of hydrogen peroxide. Fifteen different bleaching conditions were selected according to $2^3$ factorial central composite design (CCD). The bleaching effect were evaluated by lightness differences of wood surface before and after the bleaching. The RSM model was determined and its $R^2$ values were 0.93, showing it well represented the bleaching effect. The most affecting factor on the stain removal was the concentration of hydrogen peroxide, followed by reaction time and reaction temperature. Second degree of concentration was proved to have an effect on the bleaching. Bleaching rates above 3% concentrations of hydrogen peroxide were tended to be slightly decreased, and low bleaching effect was found at $20^{\circ}C$. The determined RSM model may offer very practical ways to obtain the desired levels of bleaching because it offers multiple solutions.

A Study on the Construction of Response Surfaces for Design Optimization (최적설계를 위한 반응표면의 생성에 관한 연구)

  • Hong, Gyeong-Jin;Jeon, Gwang-Gi;Jo, Yeong-Seok;Choe, Dong-Hun;Lee, Se-Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1408-1418
    • /
    • 2000
  • Gradient-based optimization methods are inefficient in applications which require expensive function evaluations, and useless in applications where objective and/or constraint functions are 'noisy' due to modeling and cumulative numerical inaccuracy since gradient evaluation results cannot be reliable. Moreover, it is difficult to be integrated with commercial analysis software, and they cannot be employed when only experimental analysis results are available. In this research an optimization program based on a response surface method has been developed to overcome the aforementioned difficulties. Various methods for design of experiments and new proposed approximation models are implemented in the program. The effectiveness of the optimization program is tested on several test problems and results are discussed.

The Optimization of Jelly with Blueberry Juice using Response Surface Methodology (반응표면분석법을 이용한 블루베리 즙 첨가 젤리의 최적화)

  • Joo, Na-Mi;Kim, Bo-Ram;Kim, Ae-Jung
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.1
    • /
    • pp.17-25
    • /
    • 2012
  • 이 연구는 블루베리 즙을 첨가하여 젤리의 제조조건을 최적화하고자 하였다. 16개의 블루베리 즙을 이용한 젤 시료는 Design Expert 프로그램을 이용하여 제조하였으며, 최적화를 위해 블루베리 즙(100~200 g), 설탕(40~160 g), 젤라틴(8~20 g)의 양을 독립변수로, 텍스처, pH, 관능평가 항목을 종속변수로 각각 선정하였다. 반응표면 분석법을 사용하기 위한 실험설계로 중심합성계획을 이용하였다. 각 항목별 최적조건은 Canonical 모형의 수치 최적화(numerical optimization)과 모형적 최적화(graphical optimization)를 통하여 선정하였으며, 그 중 가장 높은 desirability를 갖는 최적점을 선택하여 지점 예측(point prediction)을 통해 도출한 결과, 각 독립변수의 예측된 블루베리 즙을 첨가한 젤리의 최적값은 블루베리 주스 133.63 g, 설탕 160.0 g, 젤라틴은 12.78 g이었다.

Preparation Condition of Chitooligosaccharide by Cellulase using Response Surface Methodology (반응표면 분석법을 이용하여 Cellulase에 의한 키토산올리고당의 제조 조건 설정)

  • Joo Dong Sik;Lee Jung Suck;Kim Ok Seon;Cho Soon Yeoung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.6
    • /
    • pp.696-701
    • /
    • 2002
  • Optimal conditions for preparing of chitooligosaccharides from chitosan with cellulase was researched by response surface methodo-logy, Penicillium funiculosum derived cellulase was most effective for chitooligosaccharides production as the point of hydrolyzing activity and commercial utility. The result which measures the change of degrading ratio at time course, 10 hr reaction showed a exponential increase and after that time degrading ratio was not changed. The optimal conditions determined by response surface methodology with central composite design of total 26 species were $0.5\%$ of chitosan, 143 U enzyme, 49$^{\circ}C$ of reaction temperature, 13.2 hr of reaction time and pH 3.8. Major chitooligosaccharides produced from chitiosan on optimal conditions were dimer and trimer.

Development of Optimization Algorithm for Unconstrained Problems Using the Sequential Design of Experiments and Artificial Neural Network (순차적 실험계획법과 인공신경망을 이용한 제한조건이 없는 문제의 최적화 알고리즘 개발)

  • Lee, Jung-Hwan;Suh, Myung-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.3
    • /
    • pp.258-266
    • /
    • 2008
  • The conventional approximate optimization method, which uses the statistical design of experiments(DOE) and response surface method(RSM), can derive an approximated optimum results through the iterative process by a trial and error. The quality of results depends seriously on the factors and levels assigned by a designer. The purpose of this study is to propose a new technique, which is called a sequential design of experiments(SDOE), to reduce a trial and error procedure and to find an appropriate condition for using artificial neural network(ANN) systematically. An appropriate condition is determined from the iterative process based on the analysis of means. With this new technique and ANN, it is possible to find an optimum design accurately and efficiently. The suggested algorithm has been applied to various mathematical examples and a structural problem.

Optimization of Chassis Frame by Using D-Optimal Response Surface Model (D-Optimal 반응표면모델에 의한 섀시 프레임 최적설치)

  • Lee, Gwang-Gi;Gu, Ja-Gyeom;Lee, Tae-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.894-900
    • /
    • 2000
  • Optimization of chassis frame is performed according to the minimization of eleven responses representing one total frame weight, three natural frequencies and seven strength limits of chassis frame that are analyzed by using each response surface model from D-optimal design of experiments. After each response surface model is constructed form D-optimal design and random orthogonal array, the main effect and sensitivity analyses are successfully carried out by using this approximated regression model and the optimal solutions are obtained by using a nonlinear programming method. The response surface models and the optimization algorithms are used together to obtain the optimal design of chassis frame. The eleven-polynomial response surface models of the thirteen frame members (design factors) are constructed by using D-optimal Design and the multi-disciplinary design optimization is also performed by applying dual response analysis.

A Study on Railway Transportation Business Cost Estimation & Decision Supporting Methods using Simulation Data (시뮬레이션을 활용한 철도교통사업 비용 추산 및 의사결정 지원 방법 연구)

  • Chang, Suk;Nam, Do Woo;Sim, Jeong Hwan;Kim, Dong Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.4
    • /
    • pp.85-94
    • /
    • 2020
  • In determining the feasibility of planning and launching railway transportation projects, various decision-making processes are essentially required. LCC(Life Cycle Cost) value including total construction cost and operation cost is estimated in approximation Model with rough guideline. In this study, modeling and simulation-based analysis method is proposed to support the decision making process of railroad transportation and derivation of LCC. Firstly, cost analysis model was constructed by collecting various existing rail transportation business data to enable analyze based on numerical data, and the result were analyzed by DOE(Design Of Experiments) and RSM (Response Surface Method) simulation. Professional commercial software tools were used for effective model construction and simulation. In order to verify the research results, the actual railroad transportation projects were selected, and the results of the analysis were compared.

Chromaticity Analysis of Curcumin Extracted from Curcuma and Turmeric: Optimization Using Response Surface Methodology (강황과 울금으로부터 추출된 커큐민의 색도분석 : 반응표면분석법을 이용한 최적화)

  • Yoo, Bong-Ho;Jang, Hyun Sik;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.421-428
    • /
    • 2019
  • This paper describes a methode to extract yellow pigment from curcuma and turmeric containing natural color curcumin whose target color indexes of L, a, and b were 87.0 7.43, and 88.2, respectively. The pH range and extraction temperature used for the reaction surface analysis method were from pH 3 to pH 7 and between 40 and $70^{\circ}C$, respectively for both natural products. A central synthesis planning model combined with the method was used to obtain optimal extraction conditions to produce the color close to target. Results and regression equations show that the color space and difference of curcuma and turmeric have the greatest influence on the value. In the case of curcuma, the optimum conditions to satisfy all of the response theoretical values of color coordinates of L (74.67), a (5.69), and b (70.08) were at the pH and temperature of 3.43 and $54.8^{\circ}C$, respectively. The experimentally obtained L, a, and b, values under optimal conditions were 72.92, 5.32, and 72.17, respectively. For the case of turmeric, theoretical numerical color coordinates of L, a, and b, under the pH of 5.22 and temperature of $50.4^{\circ}C$ were 82.02, 7.43, and 72.86 respectively. Whereas, the experiment results were L (81.85), a (5.39), and b (71.58). Both cases showed an error range within 1%. Therefore, it is possible to obtain a low error rate when applying the central synthesis planning model to the reaction surface analysis method as an optimization process of the dye extraction of natural raw materials.

A Study on the Optimization of Cylindrical Lapping Process for Engineering Fine-Ceramics $(Al_{2}O_{3})$ by Response Surface Methodology (반응표면분석법에 의한 화인세라믹스$(Al_{2}O_{3})$ 원통래핑의 최적화에 관한 연구)

  • 김정두;최민석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.856-865
    • /
    • 1994
  • Cylindrical fine-ceramics, $Al_{2}O_{3}$, was lapped on its outer surface by vibrational lapping unit manufactured in the laboratory. Cylindrical lapping of fine-ceramics is necessarily be characterized and optimized because its process as other finishing methods is time-spending and, so, inefficient one, and because it is very complicated and random process affected by numerous factors in itself and in its environment. In this study, an efficient experimental approach, experimental design method, was used to analyze characteristics of the cylindrical lapping of fine-ceramics, $Al_{2}O_{3}$, and response surface methodology(RSM) to find out the optimal variables combination for the maximum improvement of surface roughness($R_a$). From the final surface roughness point of view in the given lapping conditions, a stationary point or optimal lapping conditions as well as the possible maximum improvement of surface roughness($R_a$) was predicted.

Improvement of Rheological Properties of Silica Composites Employing Response Surface Methodology (반응표면분석법을 이용한 실리카복합재료의 레올로지 속성 개선)

  • Yim, Gie-Hong;Yang, Seung-Nam;Kim, Nam-Ki
    • Polymer(Korea)
    • /
    • v.32 no.1
    • /
    • pp.19-25
    • /
    • 2008
  • The purpose of this study was improving the rheology properties of dentifrice by finding optimum binders polymer system which consists of carboxymethylcellulose (CMC), carbomer, and Mg/Al silicate. Response surface methodology (RSM) was employed to investigate the correlation between polymers and rheological properties of dentifrice and to optimize responses. Rheological properties were measured with oscillatory rheometer. As a result, it was identified that gel strength and yield stress were dependent on contents of CMC and carbomer and CMC caused long stringiness of dentifrice. And springness of dentifrice was dependent on contents of CMC and Mg/Al silicate. Optimum components proportion of polymers and silicate were obtained by responses optimization process. According to determined optimum components proportion, it was possible to observe a dentifrice with improved rheological properties.