• Title/Summary/Keyword: 반응치 구속방법

Search Result 2, Processing Time 0.018 seconds

The Study for Construction of the Improved Optimization Algorithm by the Response Surface Method (반응표면법의 향상된 최적화 알고리즘 구성에 관한 연구)

  • Park, J.S.;Lee, D.J.;Im, J.B.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.13 no.3
    • /
    • pp.22-33
    • /
    • 2005
  • Response Surface Method (RSM) constructs approximate response surfaces using sample data from experiments or simulations and finds optimum levels of process variables within the fitted response surfaces of the interest region. It will be necessary to get the most suitable response surface for the accuracy of the optimization. The application of RSM plan experimental designs. The RSM is used in the sequential optimization process. The first goal of this study is to improve the plan of central composite designs of experiments with various locations of axial points. The second is to increase the optimal efficiency applying a modified method to update interest regions.

  • PDF

A Study on the Hydration Reaction Model of Expansive Additive of Ettringite-Gypsum Type (에트링가이트-석탄 복합계 팽장재의 수화반응 모델에 관한 연구)

  • Park Sun Gyu;Takahumi Noguchi;Kim Moo-Han
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.581-586
    • /
    • 2005
  • High-performance concrete (HPC), which is particularly sensitive to self-desiccation, is required to be durable even in severe environmental conditions, i.e. costal area, cold district, etc. However, in recent years, some attention was particularly given to cracking sensitivity of high performance concrete at early age. It has been argued and demonstrated experimentally that such concrete undergoes autogenous shrinkage due to self-desiccation at early age under restrained condition, nd, as a result, internal tensile stress may develop, leading to micro cracking and macro cracking. This shrinkage-introduced crack produces a major serviceability problem for concrete structures. One possible method to reduce cracking due to autogenous shrinkage is the addition of expansive additive. Tests conducted by many researches have shown the beneficial effects of addition of expansive additive for reducing the risk of autogenous shrinkage-introduced cracking. However, the research on hydration model of expansion additive has been hardly researched up to now. This paper presents a study of the hydration model of Ettringite-Gypsum type expansive additive. As a result of comparing forecast values with experiment value, proposed model is shown to expressible of hydration of expansive additive.