• Title/Summary/Keyword: 반응도

Search Result 40,117, Processing Time 0.054 seconds

A Study on the Simulation of Chemical Heat Pump System Based on 2-Propanol /Acetone/Hydrogen System (2-Propanol/Acetone/Hydrogen 반응계로 구성된 화학적 열펌프 시스템의 모사 연구)

  • 김범재;여영구;정연수;송형근
    • Journal of the Korea Society for Simulation
    • /
    • v.5 no.1
    • /
    • pp.43-50
    • /
    • 1996
  • 2-propanol/acetone/hydrogen 반응계로 구성된 화학적 열펌프 시스템은 낮은 온도(82.5~$90^{\circ}C$)에서의 2-propanol의 탈수소화 반응과 높은 온도(약 $200^{\circ}C$ 부근)에서의 acetone의 수소화반응을 이용하여 열을 고품위화 시키는 장치이다. 본 연구에서는 이 시스템의 해석 및 설계를 목적으로 이 시스템에 대한 수치적인 모델들을 세우고 Sequential modular approach를 이용하여 시스템의 모사를 수행하였다. 또한 에너지 효율을 최대화하기 위하여 열펌프 시스템에서의 환류비의 영향을 규명하였다. 모사결과 이 시스템의 scale up을 위한 정량적인 정상상태 운전조건들을 구할수 있었으며 두 반응의 반응 전화율이 다르더라도 반응물의 유량의 차이를 통하여 두 반응열이 거의 같아지는 것을 알수 있었다. 아울러 주어진 운전조건에서 증류의 환류비는 최소환류비 근처의 최적값이 존재함을 알수 있었다.

  • PDF

Reaction Kinetic Study on Pyrolysis of Waste Polystyrene using Wetted Column Reactor (Wetted Column 반응기를 이용한 폴리스티렌 열분해 반응속도론적 연구)

  • You, Young Gil;Yoon, Byung Tae;Kim, Seong Bo;Choi, Myoung Jae;Choi, Cheong Song
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.535-539
    • /
    • 2008
  • Conversion to oil, yield of styrene and formation of side products such as ${\alpha}-methyl$ styrene, ethyl benzene, benzene, toluene, dimer and trimer were affected by residue formed during thermal degradation. Also, control of reaction temperature had a difficulty at the first stage. Thus, new reaction system using wetted-wall type reactor was proposed and examined on various parameters such as reaction temperature, feeding rate and removal velocity of formed vapor. Optimun condition was obtained from continuous thermal degradation using wetted-wall type reactor and reaction kinetic study was carried out at new type reactor.

A Study on the Ester Interchange Reaction of Dimethyl Naphthalate with Ethylene Glycol (Dimethyl Naphthalate와 Ethylene Glycol의 에스테르 교환반응에 관한 연구)

  • Sho, Soon-Yong;Cheong, Seong-Ihl
    • Polymer(Korea)
    • /
    • v.25 no.1
    • /
    • pp.25-32
    • /
    • 2001
  • The kinetics of ester interchange reaction of dimethyl naphthalate(DMN) with ethylene glycol(EG) has been studied in the range of 180-200 $^{\circ}C$ using zinc and manganese catalysts. The reaction was performed in a semibatch reactor under nonisothermal condition and the degree of reaction was calculated from experimental data of methanol removal rate and reaction temperature. As a reaction model, both the functional group model and the molecular species model were applied and analysed. In case of zinc catalyst, the ratio of reaction rate of methyl hydroxyethyl naphthalate(MHEN) with EG on that of DMN with EG is about 1.4, whereas in case of manganese catalyst the ratio is about 4.3, which implies that the reaction rate is quite dependent on the type of catalyst. In case of zinc catalyst, the reaction order of catalyst concentration on either DMN or MHEN and EG is less than 1, whereas in case of manganese catalyst, the reaction order is larger than 1. The activation energy for zinc and manganese catalyst, irrespective of the type of molecular species, e.g., DMN and MHEN, were found to be 25000 and 28750 cal/mol, respectively. As a result of comparing two reaction model, the molecular species model fits well for the experimental data.

  • PDF

Analysis of a Hydrogen Generation Membrane Reactor (수소 생산용 막반응기의 해석)

  • Kim Hyung Gyu;Suh Jung Chul;Baek Young Soon
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.3 s.24
    • /
    • pp.16-23
    • /
    • 2004
  • A membrane reactor concept, which combines the typical characteristics of chemical reaction with separation process, has been analyzed and simulated in this study. The advantages of the use of a membrane reactor include chemical equilibrium shift towards higher reactant conversion and purer product than the traditional reactors. A membrane reactor model which incorporates a catalytic reaction zone and a separation membrane is proposed. The water-gas shift reaction to produce hydrogen was chosen as a model reaction to be investigated. The membrane reactor is divided into smaller parts by number of n and each part (named cell), which contains both reaction and product separation function is modeled. One of the membrane outlet streams is connected to the next cell, which is repeated up to the last cell. The simulation results can be used for various purposes including decision of optimum operating condition and membrane reactor design.

  • PDF

A Study on the Rupture Disk Design and Application at the Two Phase Flow by Runaway Reaction at Batch Reactor (회분식 반응기에서 반응폭주에 의한 2-Phase 흐름 파열판 설계 및 적용에 관한 연구)

  • Lee, Hyung-Sub;Yun, Hee-Chang
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.3
    • /
    • pp.1-8
    • /
    • 2017
  • The purpose of this study is to suggest the rupture disk design(size) and application at the two phase(gas-liquid) flow by runaway reaction at batch reactor. The definition of runaway reaction is abnormally exothermic reaction by the uncontrolled cooling water or deviated operating condition. As a result, the temperature of reactor is rapidly increasing. The causes of runaway reaction are either self-heating reaction or sleeper reaction. General methods of rupture disk size or safety valve are not suitable in the runaway reaction, because of temperature and pressure increasing rapidly in the reactor and the phases of relieving fluid is 2-phase flow. This study case of the reactor incident, the depressurization system such as safety valve and vent installed, however, the system did not relieved the pressure of reactor suitably. The orifice size of the safety valve were designed too small because the size had not been considered the phenomena and character of reaction. The batch reactor design should be considered by referring to the possibility of runaway reaction proposed in this study and the size of rupture disk design method considering 2-phase flow.

Development of Bioreactors for Hydrogen-Producing Immobilized Photosynthetic Bacteria(II) : Evaluation of Immobilized Bioreactor for Hydrogen Productivity and Mass Transfer Resistance (광합성 박테리아를 이용한 고성능 수소 생산 고정화 생물반응기의 개발(II) :고정층 반응기와 연속 교반탱크 반응기에서의 수소 생산성 및 물질전달 저항 비교)

  • 선용호;한정우
    • KSBB Journal
    • /
    • v.8 no.3
    • /
    • pp.256-265
    • /
    • 1993
  • In this study, it was observed that hydrogen productivity varied with changes of input g1ucose concentration and dilution rate in FBR( Fixed Bed Reactor), and CSTR(Continuous Stirred Tank Reactor). We evaluated and compared reaction rate Parameters and internal external and overall mass transfer resistances of immobilized carrier in both reactors. Apparent $K_m$ decreased with increasing dilution rate in FBR but showed a constant value above $0.4h^{-1}$ of dilution rate in CSTR. The experimental results in FBR showed nearly analogous to those in CSTR, however, the performance of FBR resulted in lower hydrogen productivity and an external effectiveness factor but a higher internal effectiveness factor than in CSTR. The overall effectiveness factor obtained with various input 91ucose concentrations showed similar values in both reactors.

  • PDF

A study of the removal efficiency of acidic gas at various operating conditions using Computation Fluid Dynamics (전산유체역학을 이용한 반건식 반응기의 운전조건에 따른 산성가스제거효율에 관한연구)

  • Lee, Geon-Ju
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.1
    • /
    • pp.93-101
    • /
    • 2011
  • The modeling of SDR was carried out for the application of the solid waste incineration system. To find optimum operating condition for removal of acidic gases, computation fluid dynamic(CFD) model was used. In this study, the temperature profile of SDR(spray dry reactor) and the gas velocity profile for different models were investigated. In this model, the diameter of SDR was 3 meter and the height of SDR was 9 meter. The amount of inlet combustion gas of SDR was $6,125Nm^3/hr$ and the inlet temperature of SDR was 493 K. The amount of lime injection of SDR was 151 kg/hr. When the inlet shape of SDR was changed, the temperatur of SDR was changed and the gas velocity of SDR was 0.48 m/sec to 1.17m/sec and the outlet gas velocity of SDR was 6.9 m/sec to 7.42m/sec As a result of modeling, the average velocities in SDR and outlet were 0.489 m/sec and 7.424 m/sec, respectively, in which the temperature of outlet in SDR was 448 K.

Hydrogen Production by Methanol Steam Reforming over Micro-channel Reactor (마이크로 채널 반응기에서 메탄올의 수증기 개질반응을 통한 수소 제조)

  • Lee, Jin-Woo;Jeon, Hye-Jeong;Hong, Sung-Chang
    • Clean Technology
    • /
    • v.15 no.2
    • /
    • pp.130-136
    • /
    • 2009
  • Commercial catalyst (Cu-Zn/$Al_2O_3$, Johnson Matthey Co., 83-3 Catalyst) was applied to the hydrogen production by steam reforming of methanol in the micro-channel reactor (MCR). The steam reforming of methanol was tested over Cu-Zn catalyst at temperatures in the range of 200 and 300$^{\circ}C$, the catalyst size of 0.05${\sim}$2.2 mm, the space velocity of 3,000${\sim}$10,000 $hr^{-1}$ in a fixed bed continuous flow reactor. The conversion of methanol and the yield $H_2$ preferred high temperatures and low space velocities, and had optimal results with the particle size of 0.35 mm. Based on the results from experiments with fixed bed reactor, two types of MCR, boat bed and stacked bed MCRs, were studied. The stacked bed type MCR showed better methanol conversion compared with the boat type one.

이트륨 옥살레이트의 반응성 결정화 및 열분해 특성 연구

  • 최인식;성민혁;김운수;김우식;김용욱
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.10a
    • /
    • pp.51-55
    • /
    • 1997
  • 이트륨 옥살레이트 결정화에 있어서 반응물의 농도, 반응 온도, 반응물의 주입속도 변화등의 반응조건(reaction condition)의 변화와 반응기 내에서의 교반속도와 같은 hydrodynamic condition의 변화가 생성된 옥살레이트 결정의 입자크기, 결정형태등에 미치는 영향을 체계적으로 관찰하였다. 그리고 agglomeration의 영향에 의한 particle의 크기변화에 있어 생성물의 과포화는 agglomerates를 결정 짓는 가장 중요한 변수이다. 또한 반응성 결정화에 의해서 얻어진 Yttrium Oxalate가 온도 변화에 따라서 Yttrium Oxide로 열분해되는 온도구간과 결정구조의 변화 및 분자 구조의 변화를 관찰하여 최종의 Yttrium Oxide가 생성되는 것을 확인하였다.

  • PDF

The Study of Adsorption and Decomposition Reaction on the Sulfided Mo Single Crystal Surface (황화된 Mo 단결정 표면에서 Furan의 흡착 및 분해반응 연구)

  • ;Philip R. Watson
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.2
    • /
    • pp.150-155
    • /
    • 1995
  • Mo 단결정 표면에 황을 흡착시켜 형성된 상층구조를 AES와 LEED로써 연구하였다. 황의 피복률은 sulfur gun으로부터 생성되는 S2 flux로써 조절하였으며, 여러 가지 흡착된 황의 상층구조를 LEED로써 관찰하였다. 황화된 Mo 표면에서 탈산소반응(HDO)의 모델 분자로서, Furan의 흡착과 반응을 승온반응분광법(TPRS)으로 조사하였다. 낮은 온도에서 Furan 분자의 헤테로 원자는 직접 이탈하여 안정한 기체상의 반응 생성물인 일산화탄소를 형성하였으며, 이 반응은 Mo의 (100) 및 (110)면에서 각각 깨끗한 표면 및 황화된 표면에 관계없이 일어났다. 이를 바탕으로 Mo 표면에서 Furan의 분해반응에 대한 메카니즘을 제안하였다.

  • PDF