• Title/Summary/Keyword: 반용융 단조

Search Result 30, Processing Time 0.022 seconds

A Filling Analysis on Forging Process of Semi-Solid Aluminum Materials Considering Solidification Phenomena (응고현상을 고려한 반용융 알루미늄재료의 단조공정에 관한 충전해석)

  • 강충길;최진석;강동우
    • Transactions of Materials Processing
    • /
    • v.5 no.3
    • /
    • pp.239-255
    • /
    • 1996
  • A new forming technology has been developed to fabricate near-net shape products using light metal. A semi-solid forming technology has some advantages compared with the conventional forming processes such as die casting squeeze casting and hot/cold forging. In this study the numerical analysis of semi-solid filling for a straight die shape and orifice die shape in gate pattern is studied on semi-solid materials(SSM) of solid fraction fs =30% in A356 aluminum alloy. The finite difference program of Navier-Stokes equation coupled with heat transfer and solidification has been developed to predict a filling pattern and the temperature distribution of SSM. The programdeveloped in this study gives die filling patterns of SSM and final solidifica-tion region.

  • PDF

The Influence of Effective Strain on the Globular Microstructure by SIMA Process for Semi-Solid Forging (반용융 단조를 위한 SIMA 공정에서 유효 변형률이 구상화 조직에 미치는 영향)

  • Park, H.J.;Lee, B.M.;Park, J.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.9
    • /
    • pp.45-51
    • /
    • 1997
  • For semi-solid forging, it is necessarily required to prepare a workpiece with globular microstructure. Among several processes to obtain golbular microstructure, SIMA process is very simple and advantageous with respect to equipment. This paper presents the influence of effective strain on the globularization with aluminium 2024 alloy in cold working stage by SIMA process. Upsetting and forward extrusion are tested for cold working and induction heating is also carried out for reheating to obtain golbular microstructure. Microstructure is observed with an optical microscope. And finite element simulations to obtain effective strain in cold working stage are performed by using commercial finite element code, DEFORM.

  • PDF

Finite Element Analysis of Compression Holding Step Considering Solidification for Semi-Solid Forging (반용융 단조에서 응고 현상을 고려한 가압유지 단계의 유한요소해석)

  • 최재찬;박형진;조해용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.597-601
    • /
    • 1997
  • The technology of Semi-Solid Forging(SSF) has been actively developed to fabricate near-net shape products using light and hardly formable materials. Generally, the SSF process is composed of slug heating,forming,compression holding and ejecting step. After forming step in SSF, the slug is comperssed during a certain holding time in order to be completely filled in the die cavity and be accelerated in solidification rate. This paper presents the analysis of temperature,solid fraction and shrinkage at compression holding step for a cylindrical slug,then predicts the solidification time to obtain the final shaped part. Enthalpy-based finite element analysis is performed to solve the heat transfer problem considering phase change in solidification.

  • PDF

Induction Heating of a Billet for Semi-Solid Forging (반용융 단조를 위한 소재의 유도 가열)

  • 최재찬;박형진;김병민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.670-674
    • /
    • 1997
  • Semi-solid forging is a compound forging technology to deventional forging process. Among several steps of semi-solid forging process, the heating step of a billet prior to semi-solid forging step is necessarily required to obtain globular microstructure. For the forming operation to work properly, it is also important to heat the billet uniformly for the uniformity of solid-liquid distribution. To satisfy these requirements, induction heating has been generally used for a long time. This paper presents the method to find heating condition and the temperature distribution inside of a billet with a induction heating apparatus by comparing the computer simulation with experiment for aluminum alloys Al2024 and A356.

  • PDF

Induction Heating of a Billet for Semi-Solid Forging (반용융 단조를 위한 소재의 유도 가열)

  • Park, J.C.;Park, H.J.;Kim, B.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.8
    • /
    • pp.15-20
    • /
    • 1997
  • Semi-solid forging is a compound forging technology to develop conventional forging process. Among several steps of semi-solid forging process, the heating step of a billet prior to semi-solid forging step is necessarily required to obtain globular microstructure. For the forming operation to work properly, it is also important to heat the billet uniformly for the uniformity of solid-liquid distribution. To satisfy these requirements, induction heating has been generally used for a long time. This paper presents the method to find heating condition and the temperature distribution inside a billet with a induction heating apparatus by comparing the computer simulation with experiment for aluminium alloys A12024 and A356.

  • PDF

Finite Element Analysis of Compression Holding step Considering Solidification for Semi-Solid Forging (반용융 단조에서 응고 현상을 고려한 가압유지 단계의 유한요소해석)

  • Park, J.C.;Park, H.J.;Cho, H.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.10
    • /
    • pp.102-108
    • /
    • 1997
  • The technology of Semi-Solid Forging (SSF) has been actively developed to fabricate near-net- shape products using light and hardly formable materials. Generally, the SSF process is composed of slug heating, forming, compression holding and ejecting step. After forming step in SSF, the slug is compressed during a certain holding time in order to be completely filled in the die cavity and be accelerated in solidification rate. This paper presents the analysis of temperature, solid fraction and shrinkage at compression holding step for a cylindrical slug, then predicts the solidification time to obtain the final shaped part. Enthalpy-based finite element analysis is performed to solve the heat transfer problem considering phase change in solidification.

  • PDF

A fundamental study on semi-solid forging with light and hardly formable materials (난가공성 경량소재의 반용융 단조에 관한 기초 연구)

  • Choi, J.C.;Cho, H.Y.;Min, G.S.;Park, H.J.;Choi, J.U.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.7
    • /
    • pp.29-35
    • /
    • 1996
  • For semi-solid forging with aluminuim alloys, it is required to develope the globular grain structure. It was studide that cold upsetting ration in SIMA process has effect on the globularization of grain structure. Globular microstructure was generated without cold upsettings for commercial aluminium alloys. In the case of A12024, the range of grain size was 40 .approx. 50 .mu. m. The grain growth in growth in globular microstructure depend on heating time. Spur gear was forged in semi-solid state to investigate the forging condition for A12024 with hydraulic press.

  • PDF

The Influence of Compression Step on Products for Semi-Solid Forging (반용융 단조에서 가압 단계가 제품에 미치는 영향)

  • Choi, Jae-Chan;Park, Hyung-Jin;Lee, Byung-Mok
    • Transactions of Materials Processing
    • /
    • v.7 no.2
    • /
    • pp.139-149
    • /
    • 1998
  • The technology of Semi-Solid Forging(SSF) has been actively developed to fabricate near net shape products using light and hardly formable materials. Generally the SSF process is composed of slug is compressed during a certain holding time in order to completely fill the die cavity and accelerate the solidification rate. The decision of compression time is important since it can affect microstructural characteristics, mechanical properties and shape of products.. In order to determine it proper overall heat transfer coefficient between the slug and dies should be investigated. This paper presents the procedure to find the overall heat transfer coefficient between the slug and dies by nonlinear optimization of temperature and solid fraction for a cylindrical slug at compression step in closed-die semi-solid forging. In finite ele-ment heat transfer analysis release of latent heat during solidification was considered. The influence of the predicted compression time on miscrostructural characteristics mechanimcal properties and shape of products is finally investigated by experiment.

  • PDF