• Title/Summary/Keyword: 반사파동

Search Result 111, Processing Time 0.022 seconds

Fish length dependance of acoustic target strength for large yellow croaker (부세에 대한 음향반사강도의 체장 의존성)

  • 강희영;이대재
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.3
    • /
    • pp.239-248
    • /
    • 2003
  • This paper was conducted as an attempt in order to construct the data bank of target strength for acoustic estimation of fish length in the coastal waters of Korea. The fish length dependence of acoustic target strength for 13 large yellow croakers (Pseudosciaena crocea) at 75 kHz was investigated and the prediction of the target strength by using the Kirchhoff-Ray Mode model (KRM model) was compared with target strength measurements. The results obtained are summarized as follows; 1. In the averaged target strength pattern for 13 large yellow croakers the maximum target strength was -35.13 dB at $-13.35^{\circ}$ on a tilted angle. 2. The relationship between fork length(L, cm) and averaged target strength(TS, dB) was expressed as follows; TS=23. 76log (L) -73.45 (r=0.47) TS=20log(L) -67.35 From this result, the conversion coefficient was -73.45 dB and 6.1 dB lower than the coefficient -67.35 dB where the value of the slope of the regression equation is forced to be 20. 3. Averaged target strength and a length conversion coefficient derived from a target strength histogram for 13 large yellow croakers of mean length 25.59 cm were -41.23 dB, -69.72 dB, respectively. 4. In the range of $$2;{\ll} L (fish length /{\lambda}(wave length);{\ll}40$$, the prediction of the averaged target strength by the KRM model increased gradually with the increasing of $L/{\lambda}$ and was lower than the measured target strength.

Application of Convolutional Perfectly Matched Layer Method to Numerical Elastic Modeling Using Rotated Staggered Grid (회전된 엇갈린 격자를 이용한 탄성파 모델링에의 CPML 경계조건 적용)

  • Cho, Chang-Soo;Lee, Hee-Il
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.2
    • /
    • pp.183-191
    • /
    • 2009
  • Finite difference method using not general SSG (standard staggered grid) but RSG (rotated staggered grid) was applied to simulation of elastic wave propagation. Special free surface boundary condition such as imaging method is needed in finite difference method using SSG in elastic wave propagation. But free surface boundary condition in finite difference method using RSG is easily solved with adding air layer or vacuum layer. Recently PML (Perfectly Matched layer) is widely used to eliminate artificial reflection waves from finite boundary because of its' greate efficiency. Absorbing ability of CPML (convolutional Perfectly Matched Layer) that is more efficient than that of PML and CPML that don't use splitting of wave equation that should be adapted to PML was applied to FDM using RSG in this study. Frequency absorbing characteristic and energy absorbing ability in CPML layer were investigated and CPML eliminated artificial boundary waves very effectively in FDM using RSG in being compared with that of Cerjan's absorbing method. CPML method also diminished amplitude of waves in boundary layer of solid-liquid model very well.

Efficient Sound Control Method in Virtual Environments Using Raytracing Based Diffraction

  • Kim, Jong-Hyun;Choi, Jong-In
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.11
    • /
    • pp.81-87
    • /
    • 2022
  • In this paper, we propose diffraction-based sound control method to improve sound immersion in a virtual environment. The proposed technique can express the wave and flow of sound in a physical environment and a pattern similar to diffraction in real-time. Our approach determines whether there is an obstacle from the location of the sound source and then calculates the position of the new sound reflected and diffracted by the obstacle. Based on ray tracing, it determines whether or not it collides with an obstacle, and predicts the sound level of the agent behind the obstacle by using the vector reflected and refraction by the collision. In this process, the sound attenuation according to the distance/material is modeled by attenuating the size of the sound according to the number of reflected/refracted rays. As a result, the diffraction pattern expressed in the physics-based approach was expressed in real time, and it shows that the diffraction pattern also changes as the position of the obstacle is changed, thereby showing the result of naturally spreading the size of the sound. The proposed method restores the diffusion and diffraction characteristics of sound expressed in real life almost similarly.

Numerical Analysis of Pressurized Air Flow and Acting Wave Pressure in the Wave Power Generation System Using the Low-Reflection Structure with Wall-Typed Curtain (저반사구조물을 이용한 파력발전에 있어서 압축공기흐름 및 작용파압에 관한 수치해석)

  • Lee, Kwang-Ho;Choi, Hyun-Seok;Kim, Chang-Hoon;Kim, Do-Sam;Cho, Sung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.2
    • /
    • pp.171-181
    • /
    • 2011
  • Recently, many studies have been attempted to save the cost of production and to build the ocean energy power generating system. The low-reflection structure with the wall-typed curtain which has a wave power generation system of OWC is known as the most effective energy conversion system. A three-dimensional numerical model was used to understand the characteristics of velocity of flows about compressed air and to estimate the pressure acting on the low-reflection structure due to the short-period waves. The three-dimensional numerical wave flume which is the model for the immiscible two-phase flow was applied in interpretation for this. The numerical simulation showed well about the changes in velocity of compressed air and the characteristics of pressure according to the change in the wave height and depth of the curtain wall. Additionally, the results found that there was the point of the maximum velocity of the compressed air when the reflection coefficient is at its lowest point.

Two and Three Dimensional Analysis about the Reflection Coefficient by the Slit Caisson and Resulting Wave Pressure Acting on the Structure (슬리트케이슨제에 의한 반사율과 구조물에 작용하는 파압에 관한 2차원 및 3차원해석)

  • Lee, Kwang-Ho;Choi, Hyun-Seok;Baek, Dong-Jin;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.6
    • /
    • pp.374-386
    • /
    • 2010
  • Recently, the theoretical and experimental research is being made actively in control character of waves of perforated-wall caisson breakwater like the slit caisson. This study showed that the character of reflection coefficient and the wave pressure acting on the front and inner of slit caisson were estimated in two and three dimensional numerical wave flume and compared each other. The numerical experiment was set and conducted by various cases as to a variety of wave steepness under 7 sec, 9 sec, 11sec and 13 sec period condition. In this study using a 2 and 3 dimensional numerical wave flume, it applied the Model for the immiscible two-phase flow based on the Naveir-Stokes Equations. This technique can easily reproduce a complicated physical phenomenon more than others and organize the program simply. According to the results of the experiment, the reflection coefficient was estimated high in short-period waves. However, 2-dimensional numerical experiment and 3-dimensional numerical experiment were the same in case of the long-period waves and high wave steepness. And to conclude in case of short-period waves the pressures were a relatively small difference between the two, but there was a big gap in longperiod waves and high wave steepness.

Theoretical analysis of the lightwave localization phenomenon on the random transmission line (part 2) : simulation (랜덤 선로상의 광 국재현상에 관한 해석(2) : 시뮬레이션)

  • 최영규
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.4
    • /
    • pp.434-442
    • /
    • 2003
  • Taking advantage of the probability function, we have analyzed the localization phenomenon of the solution of a propagating function under the condition that the propagation constants are randomly distributed. For example, we have investigated the localization phenomenon of the voltage wave for a transmission line in which the characteristic impedance is randomly distributed. We have confirmed that the localized solution is in existence on the random lossless transmission line. Even in the case that the voltage wave is impulsively excited by the current source, the voltage wave is localized. Because the light wave is seriously affected at the localized position in the lossy transmission line, we have determined that the light wave localization phenomena are generated by multi-reflection.

Synthesizing the classical guitar sound using the Physical Model with string properties (현의 특성이 고려된 Physical 모델을 이용한 클래식 기타 음 합성)

  • Kang Myung-Soo;Kim Kyoo-Nyun
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.255-258
    • /
    • 1999
  • 본 논문에서는 파동 방정식으로부터 클래식 기타의 Physical 모델을 유도해 낸 후 이를 구현하였다. 이러한 모델을 이용해 별도의 음원 데이터를 사용하지 않고 현재 전자 음악에서 일반적으로 사용되는 table look-Up 방식보다 효율적으로 악기 음을 함성 할 수 있도록 하였다. 파동 방정식은 현의 장력, 길이 및 질량 데이터를 이용해 현의 움직임을 표현한 것이며 이 식으로부터 Fourier Series를 유도하고 다시 Z 변환을 거쳐 현의 운동을 모델링하였다. 이 과정에서 현의 양끝에서 반사되는 신호의 크기를 모델링에 포함 시켰다. 이러한 현의 모델은 모든 종류의 현악기에 공통으로 적용될 수 있으며 현의 장력 길이, 질량 데이터를 변화해 다양한 현의 특성들을 모델링 할 수 있다. 또 음 합성을 위해 현의 초기 상태 및 연속되는 입력 데이터를 바꿔 클래식 기타의 다양한 음들을 합성 할 수 있다. 클래식 기타의 Physical 모델을 평가하기 위해, 실제 악기 음 및 table look-up 방식으로 합성된 음들을 녹음해 서로 비교하였다. 시간 및 주파수 도메인 상에서 비교가 이뤄 졌으며 table look-up 합성 방식에서 모든 주파수대가 동일하게 감소하고 비슷한 음역에서 음 높이에 적합한 배음 주파수 비율을 조절할 수 없는 등, 각 을의 특성들을 정확히 묘사할 수 없는 문제점을 극복할 수 있었다.

  • PDF

Time-domain Elastic Full-waveform Inversion Using One-dimensional Mesh Continuation Scheme (1차원 유한요소망 연속기법을 이용한 시간영역 탄성파의 역해석)

  • Kang, Jun Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.213-221
    • /
    • 2013
  • This paper introduces a mesh continuation scheme for a one-dimensional inverse medium problem to reconstruct the spatial distribution of elastic wave velocities in heterogeneous semi-infinite solid domains. To formulate the inverse problem, perfectly-matched-layers(PMLs) are introduced as wave-absorbing boundaries that surround the finite computational domain truncated from the originally semi-infinite extent. To tackle the inverse problem in the PML-truncated domain, a partial-differential-equations(PDE)-constrained optimization approach is utilized, where a least-squares misfit between calculated and measured surface responses is minimized under the constraint of PML-endowed wave equations. The optimization problem iteratively solves for the unknown wave velocities with their updates calculated by Fletcher-Reeves conjugate gradient algorithms. The optimization is performed using a mesh continuation scheme through which the wave velocity profile is reconstructed in successively denser mesh conditions. Numerical results showed the robust performance of the mesh continuation scheme in reconstructing target wave velocity profile in a layered heterogeneous solid domain.

Prestack Reverse Time Migration for Seismic Reflection data in Block 5, Jeju Basin (제주분지 제 5광구 탄성파자료의 중합전 역시간 구조보정)

  • Ko, Chin-Surk;Jang, Seong-Hyung
    • Economic and Environmental Geology
    • /
    • v.43 no.4
    • /
    • pp.349-358
    • /
    • 2010
  • For imaging complex subsurface structures such as salt dome, faults, thrust belt, and folds, seismic prestack reverse-time migration in depth domain is widely used, which is performed by the cross-correlation of shot-domain wavefield extrapolation with receiver-domain wavefield extrapolation. We apply the prestack reverse-time migration, which had been developed at KIGAM, to the seismic field data set of Block 5 in Jeju basin of Korea continental shelf in order to improve subsurface syncline stratigraphy image of the deep structures under the shot point 8km at the surface. We performed basic data processing for improving S/N ratio in the shot gathers, and constructed a velocity model from stack velocity which was calculated by the iterative velocity spectrum. The syncline structure of the stack image appears as disconnected interfaces due to the diffractions, but the result of the prestack migration shows that the syncline image is improved as seismic energy is concentrated on the geological interfaces.

Analysis of Wave Transformation and Velocity Fields Including Wave Breaking due to the Permeable Submerged Breakwaters (수중투과성구조물에 의한 쇄파를 수반한 파랑변형 및 유속장 해석)

  • 김도삼;이광호;김정수
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.2
    • /
    • pp.171-181
    • /
    • 2002
  • Among various numerical methods of wave transformations including wave breaking by structure, models using VOF(Volume Of Fluid) method to trace free surface are getting into the spotlight recently. In order to analyze wave transformations and velocity of the wave fields due to the permeable submerged breakwater(PSB), This study applied VOF method to the two-dimensional wave channel installed line-source to generate waves and added dissipation zone to offer a non-reflective boundary. Hydraulic experiments was performed to obtain the application of two-dimensional numerical wave channel. The results of numerical experiments using the two-dimensional wave channel agree well with the experimental data. It was shown that vortices are formed behind the PSB, and in case of the 2-rowed PSB they also are occurred in between PSBs, strongly non-linear waves are developed on the crown of the PSB, and the direction of velocities in porous media is determined by the shape of free surface.