• Title/Summary/Keyword: 반사각

Search Result 1,002, Processing Time 0.033 seconds

Analysis of the monopulse radar tracking errors according to the JSR of cross-eye jammer and radar reflection signals (크로스아이 재머와 레이다 반사 신호 비(JSR)에 따른 모노펄스 레이다 추적 오차 분석)

  • Lim, Joong-Soo;Chae, Gyoo-Soo
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.8
    • /
    • pp.23-28
    • /
    • 2021
  • In this paper, we analyze the tracking errors of monopulse radar according to the JSR of retrodirective cross-eye and radar skin return signals. The cross-eye jammer gain(Gc) is used to calculate the radar tracking errors, and the relationship between the jammer gain and the JSR is represented mathematically. We analyze the radar tracking errors by varying the tracking angle and JSR. Analysis results of the phase difference(ϕ) and amplitude ratio(a) between the two jammer signals and the changing JSR show that the closer the phase difference of the two jammer signals is to 180, the greater the tracking error and it shows that if the JSR is above 20dB, the tracking errors no longer increase. This work presents an effective utilization of retrodirective cross-eye jammers through various tracking error analyses based on the JSR, tracking angles, two-jammer phase differences and amplitude ratios of two-jammer signals.

Topographic Normalization of Satellite Synthetic Aperture Radar(SAR) Imagery (인공위성 레이더(SAR) 영상자료에 있어서 지형효과 저감을 위한 방사보정)

  • 이규성
    • Korean Journal of Remote Sensing
    • /
    • v.13 no.1
    • /
    • pp.57-73
    • /
    • 1997
  • This paper is related to the correction of radiometric distortions induced by topographic relief. RADARSAT SAR image data were obtained over the mountainous area near southern part of Seoul. Initially, the SAR data was geometrically corrected and registered to plane rectangular coordinates so that each pixel of the SAR image has known topographic parameters. The topographic parameters (slope and aspect) at each pixel position were calculated from the digital elevation model (DEM) data having a comparable spatial resolution with the SAR data. Local incidence angle between the incoming microwave and the surface normal to terrain slope was selected as a primary geometric factor to analyze and to correct the radiometric distortions. Using digital maps of forest stands, several fields of rather homogeneous forest stands were delineated over the SAR image. Once the effects of local incidence angle on the radar backscatter were defined, the radiometric correction was performed by an empirical fuction that was derived from the relationship between the geometric parameters and mean radar backscatter. The correction effects were examined by ground truth data.

PREDICTION OF THE SUN-GLINT LOCATIONS FOR THE COMMUNICATION, OCEAN AND METEOROLOGICAL SATELLITE (통신해양기상위성에서의 태양광 반사점(SUN-GLINT) 위치예측)

  • Park, Jae-Ik;Choil, Kyu-Hong;Payk, Sang-Young;Ryu, Joo-Hyung;Ahn, Yu-Hwan;Park, Jae-Woo;Kim, Byoung-Soo
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.3
    • /
    • pp.263-272
    • /
    • 2005
  • For the Communication, Ocean and Meteorological Satellite (COMS) which will be launched in 2008, an algorithm for finding the precise location of the sun-glint point on the ocean surface is studied. The precise locations of the sun-glint are estimated by considering azimuth and elevation angles of Sun-satellite-Earth geometric position and the law of reflection. The obtained nonlinear equations are solved by using the Newton-Raphson method. As a result, when COMS is located at $116.2^{\circ}E$ or $128.2^{\circ}E$ longitude, the sun-glint covers region of ${\pm}10^{\circ}(N-S)$ latitude and $80-150^{\circ}(E-W)$ longitude. The diurnal path of the sun-glint in the southern hemisphere is curved towards the North Pole, and the path in the northern hemisphere is forwards the south pole. The algorithm presented in this paper can be applied to predict the precise location of sun-glint region in any other geostationary satellites.

Frequency Dependence of High-frequency Bottom Reflection Loss Measurements (고주파 해저면 반사손실의 주파수 종속성 측정)

  • 박순식;윤관섭;최지웅;나정열
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.8
    • /
    • pp.652-659
    • /
    • 2003
  • High-frequency(40∼120 kHz) reflection loss measurements on the water-sandy sediment with a flat interface were conducted in a water tank for various grazing angles. The water tank(5×5×5 m) was filled with a 0.5 m-thick-flat bottom of 0.5ø-mean-grain-size sand. Reflection losses, which were experimentally obtained as a function of grazing angle and frequency, were compared with the forward loss model, APL-UW model (Mourad & Jackson, 1989). For frequencies below 60 kHz, the observed losses well agree with the reflection loss model, however, in cases for frequencies above 70 kHz, the observed losses are greater by 2∼3 dB than the model results. The model calculation, which does not fully account for the vertical scale of roughness due to grain size, produce less bottom losses compared to the observations that correspond to large roughness based on the Rayleigh parameter in the wave scattering theory. In conclusion, for the same grain-size-sediment, as frequencies increase, the grainsize becomes the scale of roughness that could be very large for the frequencies above 70 kHz. Therefore, although the sea bottom was flat, we have to consider the frequency dependence of an effect of roughness within confidential interval of grain size distribution in reflection loss model.

Design and Analysis of LED.Optical Fiber Coupler for Efficient Line Lamps (효율적인 라인램프를 위한 발광다이오드-광섬유 결합기의 설계 및 해석)

  • Hong, Dae-Woon;Yoon, Myeong-Jung;Kim, Kyung-Ho;Yoo, Jae-Keun;Lee, Song-Jae
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.1
    • /
    • pp.26-32
    • /
    • 2010
  • Line lamps, which utilize leaky optical fibers based on periodic bending of plastic optical fibers, are proposed. The LED-optical fiber coupler, the key component of the line lamp, is designed and analyzed. The analysis by the Monte Carlo photon simulation method has shown that the optical coupling efficiency is affected rather sensitively by $\theta_w$, the slanting angle of the reflecting cup sidewall and $\rho_{ref}$, the reflectivity of the reflecting cup. The optical coupling efficiency of the coupler reaches the maximum when $\theta_w$ is about $60^{\circ}$, which is significantly larger than $\theta_w=45^{\circ}$, the typical sidewall slanting angle of the reflecting cup adopted in most LED lamps. When the reflectivity of the reflecting cup is above 0.8, the optical coupling efficiency is larger than 80%, which is the typical efficiency to be achieved in LD-optical fiber coupler.

Analysis of Eye-safe LIDAR Signal under Various Measurement Environments and Reflection Conditions (다양한 측정 환경 및 반사 조건에 대한 시각안전 LIDAR 신호 분석)

  • Han, Mun Hyun;Choi, Gyu Dong;Seo, Hong Seok;Mheen, Bong Ki
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.5
    • /
    • pp.204-214
    • /
    • 2018
  • Since LIDAR is advantageous for accurate information acquisition and realization of a high-resolution 3D image based on characteristics that can be precisely measured, it is essential to autonomous navigation systems that require acquisition and judgment of accurate peripheral information without user intervention. Recently, as an autonomous navigation system applying LIDAR has been utilized in human living space, it is necessary to solve the eye-safety problem, and to make reliable judgment through accurate obstacle recognition in various environments. In this paper, we construct a single-shot LIDAR system (SSLs) using a 1550-nm eye-safe light source, and report the analysis method and results of LIDAR signals for various measurement environments, reflective materials, and material angles. We analyze the signals of materials with different reflectance in each measurement environment by using a 5% Al reflector and a building wall located at a distance of 25 m, under indoor, daytime, and nighttime conditions. In addition, signal analysis of the angle change of the material is carried out, considering actual obstacles at various angles. This signal analysis has the merit of possibly confirming the correlation between measurement environment, reflection conditions, and LIDAR signal, by using the SNR to determine the reliability of the received information, and the timing jitter, which is an index of the accuracy of the distance information.

Global Patterns of Pigment Concentration, Cloud Cover, and Sun Glint: Application to the OSMI Data Collection Planning (색소농도, 운량 및 태양반사의 전구분포 : OSMI 자료수집계획에 대한 응용)

  • Yongseung Kim;Chiho Kang;Hyo-Suk Lim
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.3
    • /
    • pp.277-284
    • /
    • 1998
  • To establish a monthly data collection planning for the Ocean Scanning Multispectral Imager (OSMI), we have examined the global patterns of three impacting factors: pigment concentration, cloud cover, and sun glint. Other than satellite mission constraints (e.g., duty cycle), these three factors are considered critical for the OSMI data collection. The Nimbus-7 Coastal Zone Color Scanner (CZCS) monthly mean products and the International Satellite Cloud Climatology Project (ISCCP) monthly mean products (C2) were used for the analysis of pigment concentration and cloud cover distributions, respectively. And the monthly-simulated patterns of sun glint were produced by performing the OSMI orbit prediction and the calculation of sun glint radiances at the top-of-atmosphere (TOA). Using monthly statistics (mean and/or standard deviation) of each factor in the above for a given 10$^{\circ}$ latitude by 10$^{\circ}$ longitude grid, we generated the priority map for each month. The priority maps of three factors for each month were subsequently superimposed to visualize the impact of three factors in all. The initial results illustrated that a large part of oceans in the summer hemisphere was classified into the low priority regions because of seasonal changes of clouds and sun illumination. Sensitivity tests for different sets of classifications were performed and demonstrated the seasonal effects of clouds and sun glint to be robust.

Observation Test of Field Surface Reflectance Using Vertical Rotating Goniometer on Tarp Surface and Grass (수직 축 회전형 측각기 제작 및 야외 지표면 반사도 관측 시험: 타프와 잔디에서)

  • Moon, Hyun-Dong;Jo, Euni;Kim, Hyunki;Cho, Yuna;Kim, Bo-Kyeong;Ahn, Ho-Yong;Ryu, Jae-Hyun;Cho, Jaeil
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1207-1217
    • /
    • 2022
  • Vegetation indices using the reflectance of selected wavelength, associating with the monitoring purpose such as identifying the progress of crop growth, on the vegetation canopy surface is widely used in the digital agriculture technology. However, the surface reflectance anisotropy can distort the true value of vegetation index related to the condition of surface, even though the surface property be unchanged. That causes difficulty to observe accurately crop growth on the monitoring system. In this study, a simple type goniometer was designed to measure the reflectance from the anisotropic surface according to various zeniths and azimuths of sun and viewing sensor in the field. On the tarp like as Lambertian surface, the reflectance of Blue, Green, Red, Near-Infrared band was similar to the tarps' reflectance properties. However, the reflectance was slightly overestimated in the cloudy day. The relative difference values of vegetation indices on grass were overestimated for the forward viewing and underestimated for the backward viewing. In addition, enhanced vegetation index (EVI) showed less sensitive according to the positions of sun and sensor viewing. Field observation with a goniometer will be helpful to understand the anisotropy characteristics on the vegetation surface.

Validation of Surface Reflectance Product of KOMPSAT-3A Image Data Using RadCalNet Data (RadCalNet 자료를 이용한 다목적실용위성 3A 영상 자료의 지표 반사도 성과 검증)

  • Lee, Kiwon;Kim, Kwangseob
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_1
    • /
    • pp.167-178
    • /
    • 2020
  • KOMPSAT-3A images have been used in various kinds of applications, since its launch in 2015. However, there were limits to scientific analysis and application extensions of these data, such as vegetation index estimation, because no tool was developed to obtain the surface reflectance required for analysis of the actual land environment. The surface reflectance is a product of performing an absolute atmospheric correction or calibration. The objective of this study is to quantitatively verify the accuracy of top-of-atmosphere reflectance and surface reflectance of KOMPSAT-3A images produced from the OTB open-source extension program, performing the cross-validation with those provided by a site measurement data of RadCalNet, an international Calibration/Validation (Cal/Val) portal. Besides, surface reflectance was obtained from Landsat-8 OLI images in the same site and applied together to the cross-validation process. According to the experiment, it is proven that the top-of-atmosphere reflectance of KOMPSAT-3A images differs by up to ± 0.02 in the range of 0.00 to 1.00 compared to the mean value of the RadCalNet data corresponding to the same spectral band. Surface reflectance in KOMPSAT-3A images also showed a high degree of consistency with RadCalNet data representing the difference of 0.02 to 0.04. These results are expected to be applicable to generate the value-added products of KOMPSAT-3A images as analysisready data (ARD). The tools applied in thisstudy and the research scheme can be extended as the new implementation of each sensor model to new types of multispectral images of compact advanced satellites (CAS) for land, agriculture, and forestry and the verification method, respectively.

Design and deposition of two-layer antireflection and antistatic coatings using a TiN thin film (TiN 박막을 이용한 2층 무반사 코팅의 설계 및 층착)

  • 황보창권
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.5
    • /
    • pp.323-329
    • /
    • 2000
  • In this study we have calculated an ideal complex refractive index of a TiN trim used in a layer of anl1reilecnon (I\R) coatmg, [air$ISiO_2ITiNIglass$] in the visible. Also we simulated the rellectance of lwo-layer AR coating by varying the thicknesses of TiN and $SiO_2$ layers, respecl1vely. The simolation results show that we can controllhe lowest reflectance and AR band of tile AR coating. The TIN fihns were fabricated by a RF magnetron sputtering apparalus. The chemical, structural and electrical properties of TiN fih11S were inveshgated by the Rutherford backscattering spech'oscopy (RBS), atomic force microscope (AFM) and 4-point probe. The optical properlies were inve,tigated by the spectrophotometer and vanable angle spectroscopic ellipsometer (VASE). The smface roughness of TiN flhns \vas $9~10\AA$. TIle resistivity of TiN films was TEX>$360~730\mu$\Omega $ cm. The ,toichlOllletry of TiN film was 1'1: O:N = I: 0.65 :0.95 and ilic oxygen wa~ found on ilie smface. With these experimental and simu]al1on resulLs, we deposited duo: two-layer AR coating, [air$ISiO_2ITiNIglass$] and the refleClance was under 0.5% ill the regIOn of 440-650 run. 0 run.

  • PDF