• 제목/요약/키워드: 반복 학습 제어

검색결과 135건 처리시간 0.029초

AI기반 교량설계 프로세스 자동화를 위한 강화학습 알고리즘과 외부 해석프로그램 간 인터페이스 구축 (Interface Establishment between Reinforcement Learning Algorithm and External Analysis Program for AI-based Automation of Bridge Design Process)

  • 김민수;최상현
    • 한국전산구조공학회논문집
    • /
    • 제34권6호
    • /
    • pp.403-408
    • /
    • 2021
  • 현재 교량과 같은 토목구조물의 설계프로세스는 1차 설계 후 구조 검토를 수행하여 기준에 부적합할 경우 재설계하는 과정을 반복하여 최종적인 성과품을 만드는 것이 일반적이다. 이러한 반복 과정은 설계에 소요되는 기간을 연장시키는 원인이 되며, 보다 수준 높은 설계를 위해 투입되어야 할 고급 엔지니어링 인력을 기계적인 단순 반복 작업에 소모하고 있다. 이러한 문제는 설계 과정 자동화를 통하여 해결할 수 있으나, 설계 과정에서 사용되는 해석프로그램은 이러한 자동화에 가장 큰 장애요인이 되어 왔다. 본 연구에서는 기존 설계 과정 중 반복작업을 대체하고자 강화학습 알고리즘과 외부 해석프로그램을 함께 제어할 수 있는 인터페이스를 포함한 교량설계 프로세스에 대한 AI기반 자동화 시스템을 구축하였다. 이 연구를 통하여 구축된 시스템의 프로토타입은 2경간 RC라멘교를 대상으로 제작하였다. 개발된 인터페이스 체계는 향후 최신 AI 및 타 형식의 교량설계 간 연계를 위한 기초기술로써 활용될 수 있을 것으로 판단된다.

작업자의 안전과 작업 편리성 향상을 위한 영상처리 및 기계학습 기반 수신호 인식 협동로봇 제어 교육 매체 개발 (Development of Collaborative Robot Control Training Medium to Improve Worker Safety and Work Convenience Using Image Processing and Machine Learning-Based Hand Signal Recognition)

  • 정진혁;정훈;박경근;이기주;박희석;안채헌
    • 실천공학교육논문지
    • /
    • 제14권3호
    • /
    • pp.543-553
    • /
    • 2022
  • 협동로봇은 4차 산업혁명에서 제시하고 있는 생산시스템 중 하나로 작업자의 정교한 손기술과 로봇의 단순 반복작업 능력을 조합하여 효율성을 극대화할 수 있는 시스템이다. 또한, 작업자와 로봇 간의 작업공간 공유에서 발생하는 안전문제의 해결과 함께 효율적인 인터페이스 방법 개발에 대한 연구가 지속적으로 진행되고 있다. 본 연구에서는 이를 위하여 작업자의 편리성과 집중도를 강화하기 위해 작업자의 수신호를 인식하여 로봇을 제어하는 방법을 제시하였으며 안전공간의 개념을 도입하여 작업자의 안전을 확보하였다. 이를 구현하기 위하여 로봇제어, PLC, 영상처리, 기계학습, ROS 등 다양한 기술을 사용하였다. 또한 이를 교육매체로 활용하기 위하여 제시된 기술들의 역할과 인터페이스 방법을 정의하여 제시하였다. 학습자들은 소개된 여러 기술들을 연계하여 시스템을 구축하고 조정하는 일을 수행한다. 따라서 현장에서 필요한 기술의 필요성을 인식시키고 이에 대한 심화 학습을 유도할 수 있는 큰 장점이 있다. 또한 문제를 제시한 뒤 스스로 문제를 해결하는 방법을 모색하는 형태로 진행해 자기 주도적으로 학습할 수 있도록 유도할 수 있다. 이를 통해 4차 산업혁명의 주요 기술들을 학습하고 다양한 문제에 대한 해결 능력을 향상시킬 수 있다.

비지도 기계학습을 통한 유출 발생 내 이력 현상 구분 (Classification of hysteretic loop feature for runoff generation through a unsupervised machine learning algorithm)

  • 이은형;전항탁;김다홍;배시배시프라이데이;김상현
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.360-360
    • /
    • 2022
  • 토양수분과 유출 간 관계를 정량화하는 것은 수문 기작 및 유출 발생 과정의 이해를 위한 중요한 정보를 제공한다. 특히, 유출과정의 특성화는 수문 사상에 따른 불포화대 내 토양수 및 토사 손실 제어와 산사태 및 비점오염원 발생 예측을 위해 필수적이다. 유출과정과 관련된 비선형성과 복잡성을 확인하기 위해 토양수분과 유출 사이의 이력 거동이 조사되었다. 특히, 수문 과정 내 이력 현상 구체화를 위해 정성적인 시각적 분류 및 정량적 평가를 위한 이력 지수들이 개발되었다. 정성적인 시각적 분류는 시간에 따라 시계 및 반시계방향으로 다중 루프 형상을 나누는 방식으로 진행되었고, 정량적 평가의 경우 이력 고리(Hysteretic loop) 내 상승 고리(Rising limb)와 하강 고리(Falling limb)의 차이를 기준으로 한 지수로 이력 현상을 특성화하였다. 이전에 제안된 방법론들은 연구자의 판단이 들어가기 때문에 보편적이지 않고 이력 현상을 개발된 지수에 맞춤에 따라 자료 손실이 나타나는 한계가 존재한다. 자료의 손실 없이 불포화대 내 발생 가능한 대표 이력 현상을 자동으로 추출하기 위해 적합한 비지도 학습기반 기계학습 방법론의 제안이 필요하다. 우리 연구에서는 국내 산지 사면에서 강우 사상 동안 다중 깊이(10, 30, 60cm)로 56개의 토양수분 측정지점에서 확보된 토양수분 시계열 자료와 산지 사면 내 위어를 통해 확보된 유출 시계열 자료를 사용하였다. 먼저, 기존에 분류 방법을 기반으로 계절 및 공간특성에 따라 지배적으로 발생하는 토양수분-유출 간 이력 현상을 특성화하였다. 다음으로, 토양수분-유출 간 이력 패턴을 자료 손실 없이 형상화하여 자동으로 데이터베이스화하는 알고리즘을 개발하였다. 마지막으로, 비지도 학습방법을 이용하여 데이터베이스화된 실제 발현 이력 현상 내 확률분포를 최대한 가깝게 추정하는 은닉층을 반복적인 재구성 학습을 통해 구현함으로써 대표 이력 현상 패턴을 추출하였다.

  • PDF

일정 적응이득과 이진 강화함수를 가진 경쟁학습 신경회로망의 디지탈 칩 개발과 응용에 관한 연구 (A Study on the Hardware Implementation of Competitive Learning Neural Network with Constant Adaptaion Gain and Binary Reinforcement Function)

  • 조성원;석진욱;홍성룡
    • 한국지능시스템학회논문지
    • /
    • 제7권5호
    • /
    • pp.34-45
    • /
    • 1997
  • 본 논문에서는 경쟁학습 신경회로망의 디지탈 칩 구현에서 뉴런의 집적도를 향상시키기 위해 하드웨어 구현이 용이한 새로운 신경회로망 모델로서 일정 적응이득과 이진 강화함수를 가진 여러 가지 경쟁학습 신경회로망 모델들을 제안하고, 그 중 안정성과 분류성능이 가장 우수한 일정 적응이득과 이진 강화함수를 지닌 자기조직화 형상지도(Self-Organizing Feature Map)신경회로망의 FPGA위에서의 하드웨어 구현에 대해서 논한다. 원래의 SOFM 알고리즘에서 적응이득이 시간 종속형인데 반하여, 본 논문에서 하드웨어로 구현한 알고리즘에서는 적응이득이 일정인 값으로 고정되며 이로 인한 성능저하를 보상하기 위하여 이진 강화함수를 부가한다. 제안한 알고리즘은 복잡한 곱셈 연산을 필요로 하지 않으므로 하드웨어 구현이 용이하다는 특징이있다. 1개의 덧셈/뺄셈기와 2개의 덧셈기로 구성된 단위 뉴런은 형태가 단순하면서 반복적이므로 하나의 FPGA 위에서도 다수의 뉴런을 구현 할수 있으며 비교적 소수의 제어신호로서 이들을 모두 제어 가능할 수 있도록 설계하였다.실험 결과 각 구서부분은 모두 이상 없이 올바로동작하였으며 각 부분이 모두 종합된 전체 시스템도 이상 없이 동작함을 알 수 있었다.

  • PDF

배경분리를 위한 개선된 적응적 가우시안 혼합모델에서의 동적 학습률 제어 (Dynamic Control of Learning Rate in the Improved Adaptive Gaussian Mixture Model for Background Subtraction)

  • 김영주
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2005년도 추계종합학술대회
    • /
    • pp.366-369
    • /
    • 2005
  • 연속 영상을 이용하여 실시간으로 움직임 객체를 추출하고 추적하기 위해 배경분리(Background Subtraction) 기법을 주로 사용한다. 외부 환경에서는 조명의 변화, 나무의 흔들림과 같은 반복적인 움직임 그리고 급격히 움직이는 객체 등과 같이 고려해야할 많은 환경 변화 요인들이 존재한다. 이러한 외부 환경의 변화를 적응적으로 반영하여 배경을 분리할 수 있는 배경 모델로는 주로 가우시안 혼합 모델(GMM: Gaussian Mixture Model)이 적용되고 있으며, 실시간 성능 등을 개선시킨 적응적 가우시안 혼합 모델 등이 사용되고 있다. 본 논문은 개선된 적응적 가우시안 혼합 모델을 적용하고 고정된 학습률 ${\alpha}$(일반적으로 작은 값)을 사용함으로써 물체의 갑작스러운 움직임 등에 빠르게 적응하지 못하는 문제점을 해결하기 위해 가우시안 분포 수의 적응적 조절 기능과 픽셀 값을 분산을 이용하여 학습률 ${\alpha}$값을 동적으로 제어하는 방법을 제안하고 성능을 평가하였다.

  • PDF

딥러닝 기반 지하공동구 제어반 문열림 인식 (Deep Learning-based Object Detection of Panels Door Open in Underground Utility Tunnel)

  • 김경환;김지은;정우석
    • 한국재난정보학회 논문집
    • /
    • 제19권3호
    • /
    • pp.665-672
    • /
    • 2023
  • 연구목적: 지하공동구는 도시 지하에 전기, 수도, 가스 등의 인프라를 공동 수용하는 시설로 공기 흐름이 부족하여 계절에 상관없이 결로가 자주 발생한다. 결로는 전기 설비의 누전 화재를 일으키는 원인이 되므로 지하공동구 내의 조명 등 각종 시설물 관리를 위해 필요한 제어반은 결로에 노출되지 않도록 문이 닫힌 상태로 관리되어야 한다. 본 논문에서는 딥러닝 객체인식 기술을 활용하여 수km 거리에 반복 배치된 공동구 제어반의 문 열림 여부를 이동 카메라 조건과 조명이 꺼진 조건에서도 인식하고자 한다. 연구방법: 지하공동구를 순찰하는 로봇이 촬영한 영상데이터를 이용하여 딥러닝 객체인식 모델인 YOLO를 모자이크 이미지 증강기법으로 학습시켜 제어반 문 열림과 문 닫힘을 인식한다. 연구결과: 모자이크 이미지 증강기법으로 학습시킨 모델과 사용하지 않은 모델의 성능을 비교한 결과, 모자이크 학습 모델이 더 우수한 성능(모든 클래스에 대한 mAP가 0.994 이상임)을 보이는 것을 확인하였다. 결론: 지하공동구의 조명이 꺼진 상태에서도, 공동구 내부 시설물이 복잡한 환경에서도 제어반의 문열림 여부를 우수한 성능으로 인식하여 지하공동구 재난안전관리에 도움이 될 것으로 기대된다.

확률적 퍼지 룰 기반 학습에 의한 개인화된 미디어 제어 방법 (Personalized Media Control Method using Probabilistic Fuzzy Rule-based Learning)

  • 이형욱;김용휘;이태엽;박광현;김용수;조준면;변증남
    • 한국지능시스템학회논문지
    • /
    • 제17권2호
    • /
    • pp.244-251
    • /
    • 2007
  • 사용자 의도 파악(intention reading) 기술은 스마트 홈과 같은 복잡한 유비쿼터스(ubiquitous) 환경에서 사용자에게 보다 편리하고 개인화된(personalized) 서비스 제공이 가능하도록 해준다. 또한 학습 기능(learning capability)은 지식 발견(knowledge discovery)의 관점에서 의도 파악 기술의 핵심 요소 기술의 하나로 자리 매김하고 있다 이 논문에서는 스마트 홈(smart home) 환경에서 제공 가능한 개인화된 서비스 중의 하나로, 개인화된 미디어 제어 방법에 대한 내용을 다룬다. 특히, 사람의 행동 패턴과 같은 데이터는 패턴 분류의 관점에서 구분해야 할 클래스(class)에 비해 입력 정보가 불충분한 경우가 많아서 비일관적인(inconsistent) 데이터가 많으므로, 퍼지 논리(fuzzy logic)와 확률 (probability)의 개념을 효과적으로 병행해야 의미 있는 지식을 추출해 낼 수 있다. 이를 위하여 반복 퍼지 지도 클러스터링(IFCS; Iterative Fuzzy Clustering with Supervision) 알고리즘에 기반하여 주어진 데이터 패턴으로부터 확률적 퍼지 룰(probabilistic fuzzy rule)을 얻어 내는 방법에 대해 설명한다. 또한 이를 이용한 다양한 학습 제어 구조를 바탕으로 개인화된 미디어 서비스를 추천해 줄 수 있는 방법에 대해서 설명하도록 하고, 실험 결과를 통해 제안된 시스템의 효용성을 보이도록 한다.

반복 학습 제어를 이용한 NFR 디스크 드라이브의 2단 서보 시스템 (A Dual-Stage Servo System for an NFR Disk Drive using Iterative Learning Control)

  • 문정호;도태용
    • 제어로봇시스템학회논문지
    • /
    • 제9권4호
    • /
    • pp.277-283
    • /
    • 2003
  • Recently, near-field recording (NFR) disk drive schemes have been proposed with a view to increasing recording densities of hard disk drives. Compared with hard disk drives. NFR disk drives have narrower track pitches and are exposed to more severe periodic disturbances resulting from eccentric rotation of the disk. It is difficult to meet servo system design specifications for NFR disk drives with conventional VCM actuators in that the servo system for an NFR disk drive generally requires a feater gain and higher bandwidth. To tackle the problem various dual-stage actuator systems composed of a microactuator mounted on top of a conventional VCM actuator have been proposed. This article deals with the problem of designing a tracking servo system far an NFR disk drive adopting a dual-stage actuator. We summarize design constraints pertaining to the dual-stage servo system and present a new servo scheme using iterative teaming control. We design feedback compensators and an iterative teaming controller for a target plant and verify the validity of the proposed control scheme through a computer simulation.

전력설비시스템을 위한 퍼지 평가함수와 신경회로망을 사용한 PID제어기의 자동동조 (An Auto-tuning of PID Controller using Fuzzy Performance Measure and Neural Network for Equipment System)

  • 이수흠;박현태;이내일
    • 조명전기설비학회논문지
    • /
    • 제13권2호
    • /
    • pp.63-70
    • /
    • 1999
  • 본 논문은 여러 설비시스템의 프로세스 제어에 사용되는 PID제어기의 최적 자동동조에 관한 새로운 방법을 제안하고자 한다. 이 방법은 먼저. 제어대상의 계단응답으로부터 모델링 된 1차 지연계를 Pad 근사화하고, Ziefler-Nichols의 한계감도법으로 초기값을 정한 후, 최대 오버슈트, 감쇠비, 상승시간, 정정시간에 대한 퍼지 평가함수를 초대로 하는 최적화되 PID 계수를 목표치로 하여 신경회로망의 역전파 알고리즘을 통해 충분히 반복, 학습시켜 새로운 K, L, T값을 입력하였을 때 근사적으로 최적화된 PID 계수를 구함으로써 퍼지추론에 의한 제어 규칙이 불필요하여 자동 동조시간이 짧다는 장점을 가지고 있다.

  • PDF

모델 변환법을 이용한 점핑 로봇 제어의 운동경로 생성에 관한 연구 (A Study on Motion Planning Generation of Jumping Robot Control Using Model Transformation Method)

  • 서진호;산북창의;이권순
    • 한국정밀공학회지
    • /
    • 제21권4호
    • /
    • pp.120-131
    • /
    • 2004
  • In this paper, we propose the method of a motion planning generation in which the movement of the 3-link leg subsystem is constrained to a slider-link and a singular posture can be easily avoided. The proposed method is the jumping control moving in vertical direction which mimics a cat's behavior. That is, it is jumping toward wall and kicking it to get a higher-place. Considering the movement from the point of constraint mechanical system, the robotic system which realizes the motion changes its configuration according to the position and it has several phases such as; ⅰ) an one-leg phase, ⅱ) in an air-phase. In other words, the system is under nonholonomic constraint due to the reservation of its momentum. Especially, in an air-phase, we will use a control method using state transformation and linearization in order to control the landing posture. Also, an iterative learning control algorithm is applied in order to improve the robustness of the control. The simulation results for jumping control will illustrate the effectiveness of the proposed control method.