• Title/Summary/Keyword: 반복융해

Search Result 112, Processing Time 0.028 seconds

Hysteretic Behavior of RC Beams Exposed to Freezing and Thawing under Cyclic Loadings (철근콘크리트보의 동결융해 경험에 따른 반복하중하에서의 이력특성)

  • Jang, Gwang-Soo;Kim, Yun-Su;Seo, Soo_Yeon;Choi, Ki-Bong;Yun, Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.25-28
    • /
    • 2008
  • Generally, reinforced concrete structures exposed to the outside temperature are affected by freezing and thawing process during winter and early spring. These freezing and thawing process can lead to the reduction in durability of concrete as cracking or surface spalling. This paper is to study the hysteretic behavior of RC beams exposed to freezing and thawing under cyclic loadings. To compare the difference in hysteretic behavior of RC Beams, limited tests were conducted under different types of damage and freezing and thawing cycles. For this purpose, six specimens were tested. It is thought that experimental results will be used as basic data to evaluate hysteretic behavior of RC beams exposed to freezing and thawing.

  • PDF

An Evaluation of Resistances in Porous Asphalt Concrete Mixtures due to Repeated Cyclic Freeze-Thawing (배수성 아스팔트콘크리트 혼합물의 반복 동결융해 저항성 평가)

  • Jo, Shin Haeng;Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1D
    • /
    • pp.33-39
    • /
    • 2012
  • More and more pavements are suffering from damage these days due to the below-zero winter temperatures and frequent snowfalls. From this research, the freeze-thawing mechanisms of pavements will be observed, and the freeze-thawing resistance of porous asphalt concrete mixture is to be evaluated according to various assessment methods. The investigation was conducted through applying rigid and flexible pavements to freeze-thawing resistance experiments, which include various experiments such as deformation rate measurements, Lottman tests, repeated cyclic freeze-thawing experiments, stripping resistance tests and so on. Test results revealed that the porous asphalt concrete had less deformations according to temperatures compared to dense-graded asphalt concrete due to the 20% void gap. In addition, according to the freeze-thawing repetition experiments which are effected by moisture, the porous asphalt concrete mixture showed superior resistance to repeated cyclic freeze-thawing compared to other asphalt concrete mixtures due to the drainage and the voids within the specimen.

Development of Deterioration Prediction Model and Reliability Model for the Cyclic Freeze-Thaw of Concrete Structures (콘크리트구조물의 반복적 동결융해에 대한 수치 해석적 열화 예측 및 신뢰성 모델 개발)

  • Cho, Tae-Jun;Kim, Lee-Hyeon;Cho, Hyo-Nam
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.1
    • /
    • pp.13-22
    • /
    • 2008
  • The initiation and growth processes of cyclic ice body in porous systems are affected by the thermo-physical and mass transport properties, as well as gradients of temperature and chemical potentials. Furthermore, the diffusivity of deicing chemicals shows significantly higher value under cyclic freeze-thaw conditions. Consequently, the disintegration of concrete structures is aggravated at marine environments, higher altitudes, and northern areas. However, the properties of cyclic freeze-thaw with crack growth and the deterioration by the accumulated damages are hard to identify in tests. In order to predict the accumulated damages by cyclic freeze-thaw, a regression analysis by the response surface method (RSM) is used. The important parameters for cyclic freeze-thawdeterioration of concrete structures, such as water to cement ratio, entrained air pores, and the number of cycles of freezing and thawing, are used to compose the limit state function. The regression equation fitted to the important deterioration criteria, such as accumulated plastic deformation, relative dynamic modulus, or equivalent plastic deformations, were used as the probabilistic evaluations of performance for the degraded structural resistance. The predicted results of relative dynamic modulus and residual strains after 300 cycles of freeze-thaw show very good agreements with the experimental results. The RSM result can be used to predict the probability of occurrence for designer specified critical values. Therefore, it is possible to evaluate the life cycle management of concrete structures considering the accumulated damages due to the cyclic freeze-thaw using the proposed prediction method.

Affecting Analysis of Air Content on the Freeze-Thaw Durability of Concrete (콘크리트의 동결융해 내구성에 공기량이 미치는 영향 분석)

  • Lee, Beung-Duk;Kim, Hyun-Joong;Kang, Hye-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.565-568
    • /
    • 2008
  • Domestic area of most be happened chloride deicer damage. Because daily mean temperature is below 0$^{\circ}C$ from the area of domestic most. Concrete durability influence Air Content. Presently, We used to AE(air-entraining agent) for increase freeze-thaw durability. So, on concrete Air Spacing ratio used $200{\mu}m{\sim}230{\mu}m$ in Canada and under $250{\mu}m$ in Japan institution. Use of Air content has been and will continue to be a major part of concrete durability and scaling. Chloride-containing chemicals such as calcium chloride or rock salt are main deicers for the road. The prepared optimum mix concrete in this study show that freeze-thaw and scaling resistance of Non-AE(air content 1.5%) and AE (air content 4.5%, 7.2%). Solution concentrations of deicing agent were good result, and the pore system and change of hydration products is not difference comparing before freeze-thaw test.

  • PDF

Flexural Behavior of Reinforced Concrete Beams Exposed to Freeze-Thawing Environments (동결융해 환경에 노출된 철근콘크리트 보의 휨 거동특성)

  • Jang, Gwang-Soo;Yun, Hyun-Do;Kim, Sun-Woo;Park, Wan-Shin;Choi, Ki-Bong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.6 s.58
    • /
    • pp.126-134
    • /
    • 2009
  • Generally, reinforced concrete structures exposed to the outside temperature are affected by freezing and thawing process during winter and early spring. These freeze-thawing process can lead to the reduction in durability of concrete as cracking or surface spalling. This paper is to study the flexural behavior of RC beams exposed to freeze-thawing environments. To compare the difference in flexural behavior of RC Beams, limited tests were conducted under different types of Longitudinal steel ratio and freeze-thawing cycles. For this purpose, fourteen small-scale RC beams ($100mm{\times} 100mm {\times}600mm$) were strengthened in monotonic and cyclic loadings, subjected to up to 150, 300 cycles freeze-thawing from $-18{\sim}4^{\circ}C$. It is thought that experimental results will be used as basic data to evaluate flexural behavior of RC beams exposed to freeze-thawing.

Effect of Freeze-Thaw Cycles after Cracking Damage on the Flexural Behavior of Reinforced Concrete Beams (균열손상 후 동결융해를 경험한 철근콘크리트 보의 휨거동)

  • Kim, Sun-Woo;Choi, Ki-Bong;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.399-407
    • /
    • 2010
  • The flexural behaviors of two types of beam members exposed to freeze-thaw cycles were evaluated. This study aims to examine the effect of freeze-thaw cycles on the behavior characteristics of reinforced concrete (RC) beams. For the purpose, a part of the beam specimens were damaged until yielding of tension reinforcement was reached, before they were exposed to 150 and 300 cycles of freeze-thaw. Cyclic tests, as well as monotonic tests, were conducted to evaluate the stiffness degradation characteristics when same cycle is repeated. The material tests showed that relative dynamic modulus of concrete exposed to 300 cycles of freeze-thaw moderately decreased to 86.8% of normal concrete, indicating that concrete used in this study has good durability against freeze and thaw damage. The results of monotonic tests showed reduction of flexural strength, ductility and stiffness of the beam specimens exposed to freeze-thaw cycles compared with those of the control speciments. In particular, BDF13 specimens, which had been subjected to artificial cracking damage, did not showed enough flexural strength to satisfy nominal moment required by current concrete structure design code. In the monotonic tests results, BF75 specimens exposed to freeze-thaw cycles showed 10% or more cyclic stiffness degradation. Therefore, it was thought that deformation of concrete in compression have to be considered in design process of members under cyclic load, such as seismic device.

Synthesis of PVA/PVP Hydrogel by Irradiation Crosslinking (방사선 가교에 의한 PVA/PVP 하이드로겔 제조 및 드레싱에의 응용)

  • 김태훈;노영창
    • Polymer(Korea)
    • /
    • v.25 no.2
    • /
    • pp.270-278
    • /
    • 2001
  • Hydrogels for wound dressing were manufactured using poly(vinylalcohol)(PVA) and poly(N-vinylpyrrolidone)(PVP). The hydrogels were obtained by exposing to $^{60}$ Co${\gamma}$-rays after freezing and thawing of aqueous solutions of PVA and PVP to improve mechanical strength. Mechanical properties such as gelation, water absorptivity and gel strength were examined after repeating the \"freezing and thawing\" of PVA/PVP hydrogels, and then irradiating them at 40 kGy. The PVA/PVP ratio was in the range of 30:70 ~ 100:0, and the solid concentration of PVA/PVP was 20 wt%. The gelation and strength of hydrogels were much higher when \"freezing and thawing\" and the irradiation process were used than when only the irradiation process was utilized. In addition, the mechanical properties of PVA/PVP hydrogels after repetition of \"freezing and thawing\" are discussed. thawing\" are discussed.ssed.

  • PDF

Estimation of Weathering Characteristics of Sandstone and Andesite by Freeze-Thaw Test (동결융해시험에 의한 사암 및 안산암의 풍화특성 평가)

  • Kang, Seong-Seong;Kim, Jong-In;Obara, Yuzo;Hirata, Atsuo
    • Tunnel and Underground Space
    • /
    • v.21 no.2
    • /
    • pp.145-150
    • /
    • 2011
  • Variations of physical properties such as weight loss rate, wave velocity and uniaxial compressive strength after performing freeze-thaw cyclic test were measured in order to define weathering characteristics of sandstone and andesite. Weight change in specimens of the two rocks decreased with increasing the repetition number of freeze-thaw cyclic test. In particular, weight loss of andesite specimens was very irregular. P-wave velocity of sandstone specimens decreased more than 5%. On the other hand, P-wave velocity of andesite specimens do not vary up to 500 cycles and decreased more than 5% after 1000 cycles. This implies that the sandstone are easily weakened and loosened by weathering processes, while the andesite are relatively strong. In addition, the wave velocity changes of the andesite specimens coincident with the weight change. Uniaxial compressive strengths of the sandstone specimens slightly decreased at the early stage of the freezing-thawing cyclic test, then tended to be irregular after 64 cycles. In conclusion, the rock specimens showed smaller weight loss, less had lower strength reduction rate.