Journal of the Korea institute for structural maintenance and inspection
/
v.14
no.4
/
pp.148-153
/
2010
Concrete used as structural materials in construction fields is supplied as a type of carry and placement by ready-mixed concrete (RMC) truck after proportioning in batch plant. However, during conveying of concrete to the field, due to traffic jam, weather, etc., it is not easy to maintain adequate slump. In this case, we think that the insert of an admixture to concrete has no problem in concrete. For RMC, when the slump is not sufficient, the truck driver insert water additionally without any considerations. After that, concrete is placed after re-mixing and this leads to serious reasons such as strength reduction less than design strength considered in the structural design. Accordingly, in this study, to solve the problem to insert water without realistic reasons in RMC, basic experimental studies were performed. Admixtures used frequently in fields were selected and addition's repeated time and elapsed time interval after initial addition of the admixture were selected as main variables. Authors want that the results of this study is used as basic data to resolve the question.
Proceedings of the Korean Information Science Society Conference
/
2002.04b
/
pp.196-198
/
2002
클러스터링 데이터베이스는 높은 가용성과 확장성을 갖으며, 예상치 못한 클라이언트 질의의 증가나 질의 패턴의 변경에 따른 작업부하의 편중에 효율적으로 대처할 수 있는 구조이다. 특히 온라인 확장 기법은 트랜잭션 처리를 중지하지 않고 새로운 노드를 클러스터에 추가하여 데이터를 재구성함으로써 임의의 노드에 질의가 집중되는 문제를 해결할 수 있다. 정적으로 구성된 시스템만으로는 두 대 이상의 서버에 작업량이 집중될 경우 재배치 시 서버 간의 데이터 이동의 반복 현상이 발생되며. 이로 인해 네트웍의 부하와 함께 실시간 트랜적션의 처리에 있어서 응답 시간이 지연되는 문제점이 발생한다. 따라서 본 논문에서는 데이터 이동의 반복 현상을 해결하기 위해 클러스터링 데이터베이스에서 온라인 확장을 고려한 CSB+ 트리 색인의 온라인 재구성 기법을 제안한다. 제안된 기법은 온라인 확장을 통한 동구 노드의 확장으로 데이터 이동의 반복을 막고 새롭게 추가된 노드를 통해 빠르고 효율적인 데이터의 분산을 수행한다 또한 각 시스템의 내부를 CS$B^{+}$ 트리로 구성하여 데이터의 재주성시에도 실시간 트랜잭션에 대한 빠른 응답 시간을 보장한다.
We propose an iterated interpolation approach for the estimation fo time series parameters in the presence of outliers. The proposed approach iterates the parameter estimation stage and the outlier detection stage until no further outliers are detected. For the detection of outliers, interpolation diagnostic is applied, where the atypical observations by the one-step-ahead predictor instead of downweighting is also proposed. The performance of the proposed estimation methods is compared with other robust estimation methods by simulation study. It is observed that the iterated interpolation approach performs reasonably well is general, especially for single AO case and large $\phi$ in absolute values.
Proceedings of the Korea Information Processing Society Conference
/
2010.11a
/
pp.1271-1274
/
2010
MACsec 프로토콜은 Layer2 통신에서 유용한 데이터 암호화 솔루션이다. 하지만 다른 네트워크상에 존재하는 호스트와의 암호화 통신을 위해서는 게이트웨이에서 복호화와 암호화 과정을 반복해야 하는 어려움이 있다. 본 논문은 다른 네트워크 상에 존재하는 호스트와 추가 VLAN을 구성하여 MACsec 통신이 별도 복호화와 암호화 과정을 반복하지 않고 수행될 수 있는 방안을 제시할 것이며, 이를 수행하기 위한 구체적인 시스템 설계와 부가적인 네트워크 구성에 대해 추가적으로 설명할 것이다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2012.07a
/
pp.306-308
/
2012
본 논문은 특징 클러스터에 대한 묘사에 기반한 새로운 특징 기반 영상 정합을 제안한다. 추출되는 특징들을 모두 동등하게 처리하는 기존 방법은 반복 패턴이 존재하는 영상에서는 매칭이 종종 실패하거나 적은 일치점만을 제공한다. 그 이유는 서로 닮아 있는 반복 패턴들로 인해 기하학적으로 일관되지 않은 매칭점들이 발생하거나 거리 비율 테스트를 통과하지 못하기 때문이다. 이에 반해 제안하는 방법은 더 많은 수의 일치점들을 발견할 수 있다. 이를 위해 제안하는 방법은 먼저 추출된 특징들을 반복 패턴으로부터 온 것들과 그렇지 않은 두드러진 특징들로 분리한다. 그런 후 support vector data description을 이용하여 각 반복 패턴들을 묘사한다. 동일하지 않은 영상이 매칭되는 경우를 제거하고 기하학적으로 일관된 일치점들을 제공하기 위해 매칭된 쌍에 대한 기하학적인 단서가 추가된다. 실험을 통해 제안하는 방법은 반복 패턴으로부터 추출된 특징들에 대해 일치점을 제공함으로써 더 많은 수의 일치점을 제공하게 되어 더 정확한 영상 정합을 수행한다는 것을 증명하였다.
The back propagation algorithm took a long time to learn the input patterns and was difficult to train the additional or repeated learning patterns. So Aleksander proposed the binary neural network which could overcome the disadvantages of BP Network. But it had the limitation of repeated learning and was impossible to extract a generalized pattern. In this paper, we proposed a dynamic 3 dimensional Neuro System which was consisted of a learning network which was based on weightless neural network and a feedback module which could accumulate the characteristic. The proposed system was enable to train additional and repeated patterns. Also it could be produced a generalized pattern by putting a proper threshold into each learning-net's discriminator which was resulted from learning procedures. And then we reused the generalized pattern to elevate the recognition rate. In the last processing step to decide right category, we used maximum response detector. We experimented using the MNIST database of NIST and got 99.3% of right recognition rate for training data.
The classical approaches for computing Live Variable Analysis(LVA) use iterative algorithms across the entire programs based on the Data Flow Analysis framework. In case of Zephyr compiler, average execution time of LVA takes $7\%$ of the compilation time for the benchmark programs. The classical LVA algorithm has many aspects for improvement. The iterative algorithm for LVA scans useless basic blocks and calculates large sets of variables repeatedly. We propose the improvement of Iterative algorithm for LVA based on used variables' upward movement. Our algorithm produces the same result as the previous iterative algorithm. It is based on use-def chain. Reordering of applying the flow equation in DFA reduces the number of visiting basic blocks and redundant flow equation executions, which improves overall processing time. Experimental results say that our algorithm ran reduce $36.4\%\;of\;LVA\;execution\;time\;and\;2.6\%$ of overall computation time in Zephyr compiler with benchmark programs.
Proceedings of the Acoustical Society of Korea Conference
/
autumn
/
pp.143-146
/
2001
본 논문에서는 랜덤초기화 방법을 사용하여 초기 코드북을 생성하고, 이를 이용하여 초기 반복학습 시 수렴영역을 벗어난 2 이상의 가중치에 의한 K-means 알고리즘을 제안한다. 기존의 K-means 알고리즘이 국부적으로 최적화되고 초기 반복학습 시에 가중치의 영향이 크다는 점을 이용하여, 제안된 방법에서는 초기 반복학습 시의 가중치를 수렴영역에서 벗어난 큰 값으로 주고 이후 반복학습시의 가증치는 수렴영역 안에 있는 값으로 고정하여 코드북을 설계한다. 또한 초기 코드북을 얻기 위해 Splitting 방법과 같은 추가적인 과정 없이 랜덤한 방법에 의한 초기 코드북을 적용함으로써 제안된 알고리즘이 단순한 구조를 가지며, 구해진 코드북의 성능도 우수함을 확인할 수 있었다.
최근 유치원생과 초등학교 저학년생을 대상으로 프로그래밍 경험을 제공하기 위한 목적으로 다양한 텐저블 프로그래밍 도구들이 개발되고 있다. 개발된 텐저블 프로그래밍 도구들은 순차, 분기, 반복 등의 프로그래밍 개념을 손으로 조립하거나 쌓는 등의 구체적인 조작을 통해 프로그래밍 활동을 체험하도록 설계되었다. 하지만, 텐저블 프그래밍 도구가 순차, 반복, 분기, 변수, 함수 등의 프로그래밍의 개념을 일부만 반영하고 있어 프로그래밍 개념에 대한 체험이 완전하게 이루어지지 않고 있다. 본 연구는 기존에 개발한 텐저블 프로그래밍 도구인 B-Bricks에 조건에 따른 분기와 반복 개념을 추가하여 설계하는 연구로, B-Bricks를 사용하여 조건문과 반복문을 설계하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.