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Comparison of Parameter Estimation Methods for
Time Series Models in the Presence of QOutliers?

Sinsup Cho?), Jae June Lee3), Soohwa Kim?2)

ABSTRACT

We propose an iterated interpolation approach for the estimation of time series
parameters in the presence of outliers. The proposed approach iterates the
parameter estimation stage and the outlier detection stage until no further outliers
are detected. For the detection of outliers, interpolation diagnostic is applied,
where the atypical observations are interpolated. The modified GM-estimate
which replace atypical observations by the one-step—ahead predictor instead of
downweighting is also proposed. The performance of the proposed estimation
methods is compared with other robust estimation methods by simulation study. It
is observed that the iterated interpolation approach performs reasonably well in

general, especially for single AO case and large ¢ in absolute values.
1. Introduction

Outliers in time series can affect the model identification, the parameter
estimation, and the forecasting. Since Fox(1972) discussed two types of outliers,
the additive outliers(AQ) and the innovational outliers(I0), many authors studied
the effects of different types of outliers on those procedures. Fox(1972) developed
a likelihood ratio test for detecting outliers in autoregressive(AR) models. This
test was extended by Chang(1982), Tsay(1988), and Chang, Tiao and Chen(1988)
to autoregressive integrated moving average(ARIMA) models. Bruce and
Martin(1989), Lee(1990), Ledolter(1990) and Ryu et al.(1992) proposed outlier
detection procedures based on the deletion method which mainly use the
innovational variance. Denby and Martin(1979), Martin et al. (1979, 1980, 1981,
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1990), and Bustos and Yohai(1986) discussed a class of estimates(M, GM, RA and
S) that are robust toward outliers. Tsay (1986) and Chuang and Abraham(1989)
discussed model building strategies in the presence of outliers and Ledolter(1987)
studied the impacts of outliers on the forecasts.

A simulation study to compare the parameter estimation methods in time series
with outliers was performed by Chuang and Abraham(1989). In their comparison,
the RA-estimate was not considered and the outlier types were restricted to the
AO and IO cases. Though AO and IO are frequently studied, many authors
suggested the use of consecutive AQ's, see Bruce(1989), Bruce and Martin(1989),
Lee(1990), and Ryu (1991). In this paper we review the various parameter
estimation methods including the RA-estimate and propose an iterative approach
based on the interpolation diagnostic by Ryu et al.(1992) and a modification of
GM-estimate. The performances of various estimation methods are compared
through a simulation study where a single AO and consecutive AQO's are imposed
on the simulated series.

Let {Z:} denote an outlier-free time series generated by an ARMA model

¢'(B)Zz= B(B)at,

where ¢(B)=1-¢1B—¢2B%— - —¢,B", 6(B)=1-06,B-0,82— - -0,B% and B is a
backshift operator such that BZ;=Z, ;. The polynomials ¢(B) and 6(B) are
assumed to have all roots outside the unit circle and have no factors in common
and a, is a sequence of independent identically distributed normal random
variables with mean 0 and variance oZ.

Suppose that outliers occur at t=T,T+1,~,T+k-1 in a series {y:}. In the
consecutive AQO's model

k-1
yi=2Z+ E)W,I,(TH)

¢(B)Z;=6(B)a, ,

where

1.(r)={‘1’ =

is an indicator for the occurrence of outliers and w: is the magnitude of
disturbance at ¢=T+i .
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2. Estimation Methods in the Presence of Qutliers

Estimation methods considered in this paper may be classified into two types.
One is the robust approach such as M-estimates, GM-estimates, and
RA-estimates, where the outliers are not identified but are downweighted using
some kind of robustifying loss function. Another type is the iterative approach
such as the procedure proposed here and the iterative maximum likelihood
procedure proposed by Chang et al.(1988), where the outlier detection stage and
the parameter estimation stage are repeated until no further outliers are identified.

2.1 M-estimates

Denby and Martin(1979) suggested the use of an M-estimate ¢ , defined by

the minimization problem

s n-1
min '=ZIL()’1+1—¢)’1) ,

where L(+) is a symmetric robustifying loss function in AR(1) model.
Alternatively, éu is a solution of the M-estimate equation

n-1
,g.i)‘:'l‘()’xu— omy)=0 ,
where v( +)=L (-) is a bounded function with n(¢)>0 and usually v (0)=1.
2.2 GM-estimates

The M-estimate is highly robust in terms of efficiency for the I0 model, but
has an asymptotic bias difficulty for the AO model. This is due to the
unboundedness of the predictor variable y; . To overcome this difficulty, Denby

and Martin(1979) proposed a GM-estimate éaw , as a solution of the generalized
M-estimate equation

n-1
zjlg(yx)w(ym - damy) =0 ,
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where g( <) is bounded and 1g(#)20, in AR(1) model. The M-estimate and
GM-estimate for higher order AR models can be obtained analogously and are
referred to Martin(1979). One of the most frequently used ¥ functions is the
redescending Tukey's bisquare function

vac(u)=u(1-u?/c®? |, 0<lul<c .

The M-estimate and GM-estimate may be conveniently computed using the
iterated weighted least squares(IWLS) techniques.

2.3 Modified GM-estimates

Though the GM-estimate is consistent under a perfectly observed
autoregressive model, they do not completely use the structure of time series
when downweighting observations, see Bustos and Yohai(1986) for discussion. We
propose a modified GM-estimate where instead of downweighting the observations
we use the predictor from the structure when the residuals are large, ie., instead

of g(y:i+1) we use y:(1) , the one-step-ahead predictor of the observation using
data up to and including period t if (ym1— dauy:)/6>C where C is the

"efficiency—tuning" constant for various choices of ¥ function, for details, see
Denby and Martin(1979).

Our approach is similar to the Iterated Robust Estimate(IRE) proposed by
Martin, Samarov and Vandaele(1981). The IRE uses the GM-estimate as the
initial estimate and, using the filtering approach, replace the outliers. After outliers

are replaced they obtain the LS estimate instead of the GM-estimate.
2.4 RA-estimates

Bustos and Yohai(1986) introduced a robust estimate based on robustified
residual autocovariances (RA-estimate). Let e,(M)=8""(B)o(B)Z, , N=(41,,0p

, n-i
81,,84) be the residuals and Y:(ﬂ)=’zle,+m be the main part of the
=p+

estimate of residual autocovariances. By robustifying v:(1) , ie, by replacing



Comparison of Time Series Parameter Estimation Methods 259

the v«(M) by
n-i
Yt(ﬂ):hgln(e,ﬂ/&, eyo), i=12,~.n ,

we get the class of robust estimates. The RA-estimates are defined by the
following equations:

n—j-p-1

’2; sava+(M) =0, 1<j<p

a-j-p-1

hg;) tavae (M) =0, 1<j<gq (=)

Z"le(e./&)=0 ,

t=p+
where s; and t; are defined by
o"'(B)= ZsiB' 87'(B)= Z1B'

respectively and o is computed using
5= Med(ley. 1|, len)/.6745 .
Two ways of choosing n are
nalu,v) =w(ul(v) , Mallow type
nu(u,v) =v(u,v) , Hampel type .
In the case of n(w,v)=v(u)y(v) , the solution i of eq(+) is the LS estimate when
the series is given by z: , where
a;=v(a.( fi/0)o
and
zi= 6" (B) 8 (Bla; .

2.5 Iterated Interpolation Approach

Ryu et al.(1992) suggested an outlier detection procedure based on the
innovational variance estimate. Adopting their procedure in the outlier detection
stage, we propose an iterated interpolation approach.
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The procedure begins with modeling the original series assuming no outlier.
Then the outlier detection stage and the parameter estimation stage will be
followed as in Chang et al.(1988), who regarded outliers as being generated by
dynamic intervention models and suggested an iterative procedure of identifying
and adjusting the effect of outliers in the estimation of the parameters. In our
approach, to detect outliers we use the interpolation diagnostic suggested by Ryu
et al.(1992) instead of the intervention approach. Once an observation is identified
as an outlier, it is replaced by an interpolator and the parameters are reestimated
in the estimation stage. This is iterated until no further outliers are detected.

The interpolation diagnostic for AR(p) is based on the innovational variance
estimate

DI(T)= % (yi—y})? ,
t=p+1

where
§T(t)’ t=T"T+1).",T+k—1 ’

Y, otherwise ,

T the time point of possible outlier occurrence, yr(t) the interpolator obtained

following Pourahmadi(1989), and y; the one-step—ahead predictor based on the

interpolated series. For example, in the AR(1) case, the single observation can be
interpolated by

yr(t)=dyr1+0(yre1—04yr1 /(14 6%) .

The interpolation diagnostic adopts the deletion approach by Pena (1990), Bruce

and Martin(1989), Lee(1990), and Ledolter(1990).

Our procedure is closely related to the EM algorithm approach by Chuang and
Abraham(1987) in that the outliers are considered as missing and estimated
following EM algorithm. But their procedure is based on the estimates of the
ARMA coefficients instead of the innovational variance estimate. It has been
observed that the deletion procedure based on the innovational variance is more
sensitive to outliers than are the procedure based on the autoregressive and
moving average coefficient estimates, see Bruce and Martin(1989) and
Ledolter(1989). Therefore, we do not consider their procedure in this paper.
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3. A Simulation Study

Estimation methods mentioned in Section 2 are compared through a simulation
study. For the simulation we generate data from AR(1), with sample size n=100.
All the procedures are repeated 500 times. In our study we consider a single AO
and consecutive AO's. T=50 is chosen as the time position for a single AO,
T=50 and 51 for 2 consecutive AQ's, and T=50, 51, and 52 for 3 consecutive
AO's. The magnitudes of outliers considered are 50 and 9¢ but we report the

50 case only, since the 9 ¢ case is almost the same as the 5 ¢ case.

The following approaches are considered for the simulation.

(1) Conditional Least Squares(CLS) estimate

(2) M-estimates(M) in Section 2.1 using Huber's ¥ with tuning constant 1.345
and Tukey's bisquare ¥ with tuning constant 4.685

(3) For GM-estimates(GM) in Section 2.2, Huber's ¥ with tuning constants 1.5
and 1.0 and Tukey's ¥ with 6.0 and 3.9 are used following Denby and
Martin(1979)

(4) For modified GM-estimates(GMM) in Section 2.3, the same V¥ and tuning
constants as in GM are used.

(5) For RA-estimates(RA) in Section 2.4 the Mallow type with tuning constants
165 and 4.58 are used. We do not consider the Hampel type following the
result of Bustos and Yohai(1986).

(6) The Iterated Interpolation Approach(INT) with 75% cutoff values.

All the estimates except CLS are computed by IWLS. The same convergence
criterion used by Chuang and Abraham(1989) was also used as a stopping rule.
The scale estimate ¢ was estimated by the median of the absolute deviations of
the observations from their sample median divided by 0.6745. Mean(MEAN), mean
squared errors(MSE), efficiency(EFF), and relative bias(RELB) are calculated. The
simulation results for a single, 2, and 3 consecutive AO's case are reported in
Table 1-3, respectively.
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4., Summary and Conclusions

A simulation study was conducted to compare the performance of the estimaion
methods, especially for time series containing consecutive AOQ's. Though the
present study covers only the case of consecutive AO's having same magnitudes

wi

of disturbance, some understanding about the behavior of the estimates are

obtained from the results of simulation study.

From Tables 1-3 the followings can be observed:
(1) CLS and M have relatively severe asymptotic bias difficulties in almost all the

(2)

cases involving a single as well as consecutive AO outliers. In many cases,
especially for ¢<0, the RELB's of CLS and M increase as the number of
consecutive AQ's increases. For example, when ¢1=-0.3 CLS yields RELB

of 0.1969, 0.8453, and 13126 in 1, 2, and 3 consecutive AO's sereis
respectively, while M yields 0.1507, 0.1569, and 0.1720. In each case, the
largest RELB's among the estimates besides CLS and M are 0.0457, 0.0367,
and 0.0222, respectively.

The MSE's and RELB's of M are noticeably smaller than those of CLS.
Further refinements are observed in GM and GMM in almost all cases. For
example, when ¢1=-0.3 GM(GMM) vyields RELB of 0.0045(0.0057),

0.0042(0.0367), 0.0059(0.0078) while M yields 0.1507, 0.1569, and 0.1720. The
MSE's of GM(GMM) are 0.0115 (0.0117), 0.0116(0.0130), and 0.0119(0.0115)
while M vyields 0.0119, 0.0117, and 0.0139, respectively. In comparison
between GM and GMM, GMM performs slightly better than GM in EFF as
well as RELB for a single AO case. For consecutive AO's cases, the two
methods perform well, especially for ¢>0 and lead to nearly same values in
terms of EFF as well as RELB.

(3) Iterated interpolation approach(INT) perform well, in general, in this simulation

study. For a single AO case, INT performs better than any other estimate
methods considered in this study. For consecutive AO's cases, no estimation
methods perform noticeably better than the others. In terms of EFF, INT

shows good performance, especially when [¢| is relatively close to 1. In
general, the EFF of INT is relatively close to the EFF of the best case. For
example, when ¢=-0.3 and 3 consecutive AQ's are present, the EFF of INT
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is 13.797 which is fourth among the estimates while the largest EFF is
14.839(RA).
The performance of RA is reasonably good in this simulation study.

However, RA has some degrees of difficulties in EFF when ¢(>0) becomes
close to 1. For example, the EFF's of RA for ¢=09 are 1.991, 1472, and
1.233 for 1,2, and 3 consecutive AQO's series, respectively. Meanwhile, the
EFF's of the best case are 3.304, 2.219, and 1.979. For the case of =06 ,
similar behavior can be observed.

(5) Since the consecutive AQ's series can be approximated by an IO (Ryu et al,

1992), CLS performs well for small positive ¢ , eg. 0.3 and 0.6, as was
indicated by Martin(1980), see Table 2 and 3. This is the same phenomena
reported in Chang et al.(1988).

The above simulation study leads us to conclude that INT performs reasonably
well compared with other methods in almost all cases while GM and GMM do

well especially for ¢>0 . Though GMM performs well in some cases, further
study might be needed to improve GMM by considering better way of dealing

with y, in the M-estimate equation :g y(ye1-0y:) =0, which can use the
structure of time series. In our simulation study we do not compare Chang et al.'s
procedure since their procedure i§ not intended to identify consecutive AO's and
do not work well in the consecutive AO's case, Ryu et al.(1992).
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Table 1. Means,

Mean Squared Errors,

Efficiencies and

Relative Biases of the AR(l1) Parameter (Single
AO, wi=5.0 at T=50)
(i) METHOD MEAN MSE EFF RELB
CLS -.8280 .0125 1.000 .0800
M -.8717 .0057 2.218 .0315
0.9 GM -.8733 .0053 2.379 .0296
. GMM -.8740 .0053 2,371 .0289
RA -.8746 .0050 2.506 .0282
INT -.8820 .0041 3.083 .0200
CLS -.5037 .0172 1.000 1606
M -.5511 .0117 1.479 0816
0.6 M -.5887 .0075 2.293 .0189
: MM -.5897 .0077 2.239 .0179
RA -.5856 .0074 2.333 .0240
INT -.6025 .0070 2.478 0042
CLS -.2409 .0130 1.000 .1969
M -.2548 0119 1.083 1507
0.3 GM -.3014 0115 1.123 .0045
: GMM -.3017 .0117 1.111 .0057
RA -.2960 .0101 1.281 .0133
INT -.3137 .0116 1.116 .0457
CLS .2288 .0160 1.000 2372
M L2318  .0152 1.049 2272
0.3 oM .2799 0143 1.113 .0669
: oMM .2800 0144 1.106 0665
RA L2713 .0146 1.092 . 0956
INT .2897 0159 1,006 .0344
CLS .4890 .0231 1.000 .1851
M .5267 .0185 1.249 1238
0.6 GM .5661 0131 1.756 .0565
: GMM .5663 .0132 1.743 .0562
RA .5608 .0137 1.679 .0653
INT .5828 0126 1.833 .0286
CLS .8297 .0094 1.000 0782
M .8776 .0061 1.539 0248
0.9 GM .8733 .0038 2.475 .0296
: GMM .8743 .0038 2.471 .0286
RA .8796 ,0047 1.991 0227
INT .8817 .0029 3.304 .0204




Table 2. Means, Mean Squared Errors, Efficiencies and Relative
Biases of the AR(1) Parameter (2Consecutive AQ’s wi=5.0
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at T=50,51)
) METHOD MEAN  MSE _ EFF  RELB
CLs -.7352 .0411 1.000 1831
M -.8688 .0070 5.870 0347
0.9 oM -.8738 0050 8.290 .0291
: GMM -.8862 .0040 10.339 .0153
RA -.8795 - .0044 9.358 0228
INT -.8759  .0048 8.606 0268
cLs -.3191 .0894 1.000 4681
M -.5514 .0115 7.790 0810
0.6 GM -.5889 .0075 11.960 .0185
: GMM -.6050 .0075 11.903 .0083
RA -.5962 .0079 11.352 .0064
INT -.5878  .0078 11.401 .0204
CLS -.0464 0732 1.000 8453
M -.2529 .0117 6.250 .1569
0.3 GM -.3013  .0116 6.292 .0042
: GMM -.3110 .0130 5.647 .0367
RA -.3046  .0121 6.042 0154
INT -.2992  .0114  6.444 0027
CLS .3524 0101 1.000 .1748
M .2703 0154  .654 0989
03 GM .2810 .0146  .688 .0633
: GMM .2808 .0147  .686 0639
RA .2672 .0142 709 1093
INT .2755 .0154  .652 .0817
CLS .5557 .0087 1.000 0738
M .5686 .0155  .564 .0523
0.6 M .5692 .0134  .652 .0513
. GMM .5691 .0134 651 .0515
RA .5540 .0138  .635 .0767
INT .5638 .0139  .627 .0604
CLS .8396 .0072 1.000 0671
M .8856 .0047 1.533 0160
0.9 GM .8766 .0036 1.990 0260
: GMM .8760 .0037 1.976 0266
RA 8780 .0049 1.472 0244
INT .8766 .0033  2.219 .0260

265



266 4ld, olxj&E, U4

Table 3 Means, Mean Squared Errors, Efficiencies and Relative
Biases of the AR(1) Parameter (3 Consecutive AO’s w=5.0
at T=50, 51, 52)

[ METHOD MEAN MSE EFF RELB
CLS -.6518 .0826 1.000 2758

M -.8708 .0060 13.874 .0325

09 GM -.8731 .0052 15.925 0299
’ GMM -.8726 .0054 15,222 .0305
RA -.8752 .0052 15.826 .0276

INT -.8785 .0045 16.704 0239

CLS -.1746  .1944 1.000 7090

M -.5489 0115 16.972 0852

0.6 GM -.5887 .0078 25.070 .0189
' GMM -.5805 .0080 24.434 .0326
RA -.5889 .0077 25,337 .0184

INT -.5832 .0082 23.841 .0280

CLS .0938 1653 1.000 1,3126

M -.2484 .0139 11.856 .1720

0.3 GM -.3018 .0119 13.939 0059
: GMM -.3023 0115 14,315 0078
RA -.3001 .01ll 14,839 0002

INT -,2933  .0120 13.797 .0222

CLS .4375 .0258 1,000 .4583

M L3121 .0242  1.069 0402

0.3 GM .2827 .0145 1.783 .05676
: GMM .2825 0146 1.772 0583
RA .2845 0145 1.782 0517

INT .2909 .0184 1.406 .0303

CLS .6024 0060 1,000 0040

M .6100 .0180 .335 .0166

0.6 GM .5734 . 0131 .458  .0443
: oM .5735 .0132 .456 . 0442
RA .5647 0134 .450 . 0588

INT .5767 0130 .462  .0388

CLS .8466 .0060 1.000 0594

M .8915 ,0038 1.564 .0094

0.9 GM .8807 .0037 1.633 .0215
: GMM .8845 0049 1.226 0172
RA .8791  .004% 1.223 0233

INT .8805 .0030 1.979 0217
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