• Title/Summary/Keyword: 반복구성

Search Result 1,793, Processing Time 0.026 seconds

A P-type Iterative Learning Controller for Uncertain Robotic Systems (불확실한 로봇 시스템을 위한 P형 반복 학습 제어기)

  • 최준영;서원기
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.3
    • /
    • pp.17-24
    • /
    • 2004
  • We present a P-type iterative learning control(ILC) scheme for uncertain robotic systems that perform the same tasks repetitively. The proposed ILC scheme comprises a linear feedback controller consisting of position error, and a feedforward and feedback teaming controller updated by current velocity error. As the learning iteration proceeds, the joint position and velocity mrs converge uniformly to zero. By adopting the learning gain dependent on the iteration number, we present joint position and velocity error bounds which converge at the arbitrarily tuned rate, and the joint position and velocity errors converge to zero in the iteration domain within the adopted error bounds. In contrast to other existing P-type ILC schemes, the proposed ILC scheme enables analysis and tuning of the convergence rate in the iteration domain by designing properly the learning gain.

Postprocessing for Tonality and Repeatability, and Average Neural Networks for Training Multiple Songs in Automatic Composition (자동작곡에서 조성과 반복구성을 위한 후처리 방법 및 다수 곡 학습을 위한 평균 신경망 방법)

  • Kim, Kyunghwan;Jung, Sung Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.6
    • /
    • pp.445-451
    • /
    • 2016
  • This paper introduces a postprocessing method, an iteration method for melody, and an average neural network method for learning a large number of songs in order to improve musically insufficient parts in automatic composition using existing artificial neural network. The melody of songs composed by artificial neural networks is produced according to the melodies of trained songs, so it can not be a specific tonality and it is difficult to have a repetitive composition. In order to solve these problems, we propose a postprocessing method that converts the melody composed by artificial neural networks into a melody having a specific tonality according to music theory and an iteration method for melody by iteratively composing measure divisions of artificial neural networks. In addition, the existing training method of many songs has some disadvantages. To solve this problem, we adopt an average neural network that is made by averaging the weights of artificial neural networks trained each song. From some experiments, it was confirmed that the proposed method solves the existing problems.

Efficient Determination of Iteration Number for Algebraic Reconstruction Technique in CT (CT의 대수적재구성기법에서 효율적인 반복 횟수 결정)

  • Joon-Min, Gil;Kwon Su, Chon
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.141-148
    • /
    • 2023
  • The algebraic reconstruction technique is one of the reconstruction methods in CT and shows good image quality against noise-dominant conditions. The number of iteration is one of the key factors determining the execution time for the algebraic reconstruction technique. However, there are some rules for determining the number of iterations that result in more than a few hundred iterations. Thus, the rules are difficult to apply in practice. In this study, we proposed a method to determine the number of iterations for practical applications. The reconstructed image quality shows slow convergence as the number of iterations increases. Image quality 𝜖 < 0.001 was used to determine the optimal number of iteration. The Shepp-Logan head phantom was used to obtain noise-free projection and projections with noise for 360, 720, and 1440 views were obtained using Geant4 Monte Carlo simulation that has the same geometry dimension as a clinic CT system. Images reconstructed by around 10 iterations within the stop condition showed good quality. The method for determining the iteration number is an efficient way of replacing the best image-quality-based method, which brings over a few hundred iterations.

Nonlinear Analysis of Reinforced Concrete Flexural Members under Cyclic Loading (반복하중을 받는 철근콘크리트 휨부재의 비선형해석)

  • 변근주;김영진
    • Magazine of the Korea Concrete Institute
    • /
    • v.3 no.3
    • /
    • pp.149-157
    • /
    • 1991
  • This paper concentrates on the nonlinear analysis of the reinforced concrete flexural members under cyclic loading. To develop a nonlinear material model, concrete is treated as an orthotropic nonlinear material and steel is modeled as an elasto-plastic material. The models for hysteresis behavior with stiffness degradation in compression and for crack opening and closing in tension are included. The finite element computer program for the nonlinear analysis of RC flexural members under cyclic loading is developed. The accuracy and reliabihty of the numerical procedure IS demonstrated by the FEM analysis and test results of underreinforced concrete beams.

Constitutive Equation for Clay in Overconsolidation State and Under Cyclic Loading (과압밀상태 및 반복하중을 받는 점토지반에 대한 구성모델)

  • 이승래;김주용
    • Geotechnical Engineering
    • /
    • v.10 no.1
    • /
    • pp.7-18
    • /
    • 1994
  • A new model for describing the behavior of clay under monotonic and cyclic loading is proposed. This model uses the hyperbolic representation for the stress -strain relationship in overconsolidated state and it describes undrained effective stress path on the basis of the critical state theory. The developed constitutive model by using an energy dissipation equation can describe the behavior of clay in heavily overconsolidated state as u.ell as lightly overconsolidated state under monotonic loading. In order to extend the model for the behavior of clay under cyclic loading, a shift function of undrained stress spacing ratio is introduced in the constitutive model developed for monotonlc loading. A single additional parameter is required to represent the cyclic effect and it can be reasonably deter mined from the test results. The measured behavior in undrained cyclic triaxial tests has been easily and precisely predicted by the newly developed constitutive model.

  • PDF

Nonlinear Analysis of Reinforced Concrete Shells Subjected to Cyclic Load (반복하중을 받는 철근 콘크리트 쉘구조의 비선형 해석)

  • 김태훈;유영화;신현목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.35-50
    • /
    • 2000
  • 본 논문에서는 반복하중을 받는 철근 콘크리트 쉘구조물의 해석을 위한 비선형 유한요소 해법을 제시하였다 유한 요소로서는 충상화기법을 이용한 부재회전강성도를 갖는 4절점 평면 쉘요소가 개발되었다 두께 방향에 대한 철근과 콘크리트의 재료성질을 고려하기 위하여 충상화기법이 도입되었다. 재료적 비선형성에 대해서는 균열콘크리트에 대한 인장, 압축, 전단모델과 콘크리트중에 있는 철근모델을 조합하여 고려하였다. 이에 대한 콘크리트의 균열모델로서는 분산균열모델을 사용하였으며 철근에 대해서는 1축 응력상태로가정하여 등가의 분산 분포된 철근량으로 모델화하였다 구성모델은 재하, 제하 그리고 재재하과정을 포함하여 요소는 반복하중하에서 철근콘크리트 쉘의 거동을 파악할 수 있다 신뢰성 있는 실험결과와 비교를 통하여 본 논문의 해석방법이 반복하중을 받는 철근콘크리트 쉘구조의 비선형 해석에 적합한 방법임을 입증하고자 한다.

  • PDF

Serially Concatenated Multilevel Coded Modulation (직렬연접 다중레벨 부호변조)

  • Bae, Sang-Jae;Lee, Sang-Hoon;Joo Eon-Kyeong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.11
    • /
    • pp.12-20
    • /
    • 2002
  • Serially concatenated multilevel coded modulation (SCMCM) is proposed in this paper. It is a combined scheme of the outer convolutional code and inner multilevel coded modulation (MCM) which is bandwidth-efficient coded modulation. And the performance of three schemes for decoding of the proposed SCMCM is compared and analyzed. As results of simulations, global iterative decoding with inner and outer code should be performed to improve the error performance as the number of iterations is increased. And the scheme which uses both local iterative multistage decoding in MCM and global iterative decoding with inner and outer code, called Scheme 3 in this paper, shows the best error performance among the three schemes considered in this paper. In addition, performance difference between this scheme and the others is increased as the signal to noise ratio (SNR) is increased. Therefore, Scheme 3 is considered to be the proper decoding scheme of SCMCM.

A Study on the Stratified Cluster Replicated Systematic Unrelated Question Model (층화 집락 반복계통 무관질문모형에 관한 연구)

  • Lee, Gi-Sung
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.2
    • /
    • pp.209-222
    • /
    • 2013
  • We apply stratified cluster sampling to a replicated systematic unrelated question model for a large scale survey in which the population is comprised of several strata developed by several clusters and with sensitive parameters. We first present a replicated systematic unrelated question model using an unrelated question model to procure sensitive information from the population of clusters and then develop a suggested model to an unrelated question by a stratified cluster replicated systematic sampling that can be used in large population of strata. We cover the proportional and optimum allocation for the suggested model. Finally, we compare and analyze the efficiency of the suggested model with the replicated systematic unrelated question model.

An Evaluation Method of Deformation Moduli using Finite Element Analysis of Cyclic Plate Load Tests (반복재하 평판재하시험의 유한요소해석을 이용한 변형계수의 추정기법)

  • Oh, Seboong;Seo, Wonseok;Kwon, Ohkyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.6
    • /
    • pp.61-68
    • /
    • 2007
  • The problem on cyclic plate load tests was analyzed by finite element method using an anisotropic hardening constitutive model. The constitutive model was coded to user subroutine in ABAQUS. Using the result of the analysis, Young's moduli corresponding to various strain levels were evaluated by a back calculation method and were very similar to those of input. On the basis of the back calculation method plate loading tests were verified. As a result, deformation moduli could be evaluated practically from cyclic plate load tests with respect site conditions.

  • PDF