• Title/Summary/Keyword: 반도전자

Search Result 173, Processing Time 0.028 seconds

Fabrication of Low-Cost Physically Unclonable Function (PUF) Chip Using Multiple Process Variables (다중 공정변수를 활용한 저비용 PUF 보안 Chip의 제작)

  • Hong-Seock Jee;Dol Sohn;Ju-Won Yeon;Tae-Hyun Kil;Hyo-Jun Park;Eui-Cheol Yun;Moon-Kwon Lee;Jun-Young Park
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.5
    • /
    • pp.527-532
    • /
    • 2024
  • Physically Unclonable Functions (PUFs) provide a high level of security for private keys using unique physical characteristics of hardware. However, fabricating PUF chips requires numerous semiconductor processes, leading to high costs, which limits their applications. In this work, we introduce a low-cost manufacturing method for PUF security chips. First, surface roughening through wet-etching is utilized to create random variables. Additionally, physical vapor deposition is added to further enhance randomness. After PUF chip fabrication, both Hamming distance (HD) and Hamming weight (HW) are extracted and compared to verify the fabricated chip. It is confirmed that the PUF chip using two different multiple process variables demonstrates superior uniqueness and uniformity compared to the PUF security chip fabricated using only a single process variable.

Fabrication of Scattering Layer for Light Extraction Efficiency of OLEDs (RIE 공정을 이용한 유기발광다이오드의 광 산란층 제작)

  • Bae, Eun Jeong;Jang, Eun Bi;Choi, Geun Su;Seo, Ga Eun;Jang, Seung Mi;Park, Young Wook
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.95-102
    • /
    • 2022
  • Since the organic light-emitting diodes (OLEDs) have been widely investigated as next-generation displays, it has been successfully commercialized as a flexible and rollable display. However, there is still wide room and demand to improve the device characteristics such as power efficiency and lifetime. To solve this issue, there has been a wide research effort, and among them, the internal and the external light extraction techniques have been attracted in this research field by its fascinating characteristic of material independence. In this study, a micro-nano composite structured external light extraction layer was demonstrated. A reactive ion etching (RIE) process was performed on the surfaces of hexagonally packed hemisphere micro-lens array (MLA) and randomly distributed sphere diffusing films to form micro-nano composite structures. Random nanostructures of different sizes were fabricated by controlling the processing time of the O2 / CHF3 plasma. The fabricated device using a micro-nano composite external light extraction layer showed 1.38X improved external quantum efficiency compared to the reference device. The results prove that the external light extraction efficiency is improved by applying the micro-nano composite structure on conventional MLA fabricated through a simple process.

전력케이블용 CNT 반도전 컴파운드의 특성 연구

  • Yang, Jong-Seok;Bae, Hye-Yeon;Jeon, Geun-Bae;Seong, Baek-Ryong;Park, Dong-Ha
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.157-157
    • /
    • 2009
  • 다층카본나노튜브(MWCNT) 를 첨가한 전력케이블용 CNT 반도전 컴파운드를 용융혼합법을 사용하여 제조하였다. 카본나노튜브, 카본블랙, 분산제, 가교조제 함량변화에 따른 초고압 CNT 반도전 컴파운드의 특성을 조사하였다. 카본나노튜브 단독, 카본나노튜브와 전도성 카본블랙을 혼용함에 따른 상승효과, 분산제와 가교조제 사용에 따른 초고압 전력케이블용 CNT 반도전 컴파운드의 우수한 물성을 확인할 수 있었다.

  • PDF

Recovery of Radiation-Induced Damage in MOSFETs Using Low-Temperature Heat Treatment (저온 열처리를 통한 MOSFETs 소자의 방사선 손상 복구)

  • Hyo-Jun Park;Tae-Hyun Kil;Ju-Won Yeon;Moon-Kwon Lee;Eui-Cheol Yun;Jun-Young Park
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.5
    • /
    • pp.507-511
    • /
    • 2024
  • Various process modifications have been used to minimize SiO2 gate oxide aging in metal-oxide-semiconductor field-effect transistors (MOSFETs). In particular, post-metallization annealing (PMA) with a deuterium ambient can effectively eliminate both bulk traps and interface traps in the gate oxide. However, even with the use of PMA, it remains difficult to prevent high levels of radiation-induced gate oxide damage such as total ionizing dose (TID) during long-term missions. In this context, additional low-temperature heat treatment (LTHT) is proposed to recover from radiation-induced damage. Positive traps in the damaged gate oxide can be neutralized using LTHT, thereby prolonging device reliability in harsh radioactive environments.

The functions & Requirements of the Semi-Conducting layer in the power cable. (전력 케이블에서 반도전층의 역할과 요구 특성)

  • Jung, Yun-Tack;Nam, Jong-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.101-105
    • /
    • 2001
  • For high voltage XLPE power cables, semiconducting layers have been applied to prevent discharge at the interface between conductor and insulation, and/or insulation and external shielding layer. The semiconducting layers may be also effective to release electrical stress in the interface. The property of semiconducting layers are significantly related to the quality and reliability of power cables. Generally, these semiconducting layers are formed by extruding, the conductibility of the material is given by the carbon black mixed with base polymer. The life of power cables is depended on the smoothness of the interface between insulation and semiconducting layer. If the smoothness is no good, the life of power cables is shorter because the electrical stress and water tree is increased. The causes of no good smoothness are the void of the interface, the protrusions, the contaminants and impurities of the semiconducting layer. The selection and dispersion of the Carbon Black is the significant factor to determine the life of power cable in the manufacturing of semiconducting compound.

  • PDF

Surface Characteristics on Semi-conductive Silicone Rubber by Plasma Modification (플라즈마 처리에 따른 반도전성 실리콘 고무의 표면특성 변화)

  • Youn, Bok-Hee;Kim, Dong-Wook;Jeon, Seung-Ik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.219-220
    • /
    • 2005
  • 본 논문은 산소 플라즈마 처리에 따른 반도전성 실리콘 고무의 표면특성 변화를 조사하였다. 실리콘 고무는 각종 초고압 전력기기에서 절연부품으로 많이 사용되어 지고 있다. 하지만, 실리콘 고무가 가지고 있는 고유의 특성 때문에 반도전성 부품과 절연성 부품간의 계면이 접착이 잘 되지 않는 문제점이 나타난다. 이를 위해서 접착제를 사용하거나 표면 거칠기를 변화시키는 개질을 하기도 하지만, 이는 새로운 계면을 형성하거나 약점을 만드는 문제가 있다. 이를 위해 반도전성 실리콘 고무 표면을 산소 플라즈마 개질시켜, 표면을 활성화 시키는 역할과 표면을 균일하게 에칭시켜 기계적 interlocking 메커니즘으로 접착력을 향상시킬 수 있다. 본 실험에서는 산소 플라즈마 처리에 따른 반도전성 실리콘 고무의 표면을 표면에너지. XPS로 기본적인 표면특성을 조사하였다. 실험 결과, 단시간의 산소플라즈마 처리로 표면에 다수의 관능기가 관찰되었다. 이러한 산화층은 실록산 결합쇄가 산화된 실리카 유사층으로 밝혀졌다. 이로써 절연부와 접착 용이성이 기대되었으며, 벌크적인 실리콘 고무의 특성변화 없이 표면개질 만으로 우수한 계면특성을 얻을 수 있다.

  • PDF

Enhancing Electrical and Optical Properties in Mechanoluminescent Flexible Nanocomposite Based on ZnS:Cu-PDMS by Mixing CNTs (ZnS:Cu-PDMS 기반 기계 발광 유연 나노 복합체의 CNT 혼입에 따른 전기 및 광학적 특성 향상에 대한 연구)

  • Tae-Min Kim;Hyun-Woo Kim;Jong-Hyeok Yoon;Mi-Hee Kim;Da-Bin Jeon;Dae-Choul Choi;Sung-Nam Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.5
    • /
    • pp.531-535
    • /
    • 2023
  • Mechanoluminescence (ML) is a phenomenon where the application of mechanical force to ML materials generates an electric field and produces light, holding significant promise as an eco-friendly technology. However, challenges in commercializing ML technology has arisen due to its low brightness and short luminous lifetime. To address this, in this work, we enhance ML efficiency by mixing carbon nanotubes (CNTs) into a ZnS: Cu embedded in a polydimethylsiloxane composite ML device. The inclusion of CNTs boosts ML intensity by 98% compared to devices without CNTs, as the increasing CNT fraction elevates conductivity, thereby amplifying ML intensity. However, this increase in CNT fraction also leads to enhanced light absorption within the device. Consequently, we observe a trend where ML intensity rises initially but declines beyond a CNT fraction of 0.0015 wt%. Based on these findings, we anticipate that our research will make valuable contributions to the advancement of electrical powerless mechanoluminescent technology.