• Title/Summary/Keyword: 반경 터빈

Search Result 56, Processing Time 0.025 seconds

Axial Turbine Aerodynamic Design of Small Heavy-Duty Gas Turbines (발전용 소형가스터빈의 축류터빈 공력설계)

  • Kim, Joung Seok;Lee, Wu Sang;Ryu, Je Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.415-421
    • /
    • 2013
  • This study describes the aerodynamic design procedure for the axial turbines of a small heavy-duty gas turbine engine being developed by Doosan Heavy Industries. The design procedure mainly consists of three parts: namely, flowpath design, airfoil design, and 3D performance calculation. To design the optimized flowpath, through-flow calculations as well as the loss estimation are widely used to evaluate the effect of geometric variables, for example, shape of meridional plane, mean radius, blades axial gap, and hade angle. During the airfoil design procedure, the optimum number of blades is calculated by empirical correlations based on the in/outlet flow angles, and then 2D airfoil planar sections are designed carefully, followed by 2D B2B NS calculations. The designed planar sections are stacked along the spanwise direction, leading to a 3D surfaced airfoil shape. To consider the 3D effect on turbine performance, 3D multistage Euler calculation, single row, and multistage NS calculations are performed.

A Study on the Uncertainty Propagation of Measured Parameters on the Turbine Performance Test (터빈성능시험에서 측정변수의 불확도 파급에 관한 연구)

  • Kim,Eun-Jong;Jo,Su-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.8
    • /
    • pp.107-114
    • /
    • 2003
  • The effect of uncertainties caused by measured parameters, which are propagated to the uncertainty of total-to-total efficiency, are analyzed from a turbine performance test. The degree of reaction is 0.373 at the mean radius on a tested 3-D axial type turbine, and the performance test is conducted at the low pressure and cold temperature status. The uncertainty of turbine inlet and exit total pressure shows the strong propagation effect to the uncertainty of total-to-total efficiency. This means that a high precision pressure measuring system is required to reduce the uncertainty propagated by the pressure. In the uncertainty portion of each measured parameters to the uncertainty of total- to-total efficiency, the uncertainty by torque is the highest and the uncertainty by RPM is the lowest. In case of the total pressure, the effect of the uncertainty by torque is increased with the increasing RPM. The uncertainty of total pressure at the turbine exit is more important than that at the turbine exit.

Performance Analysis by CFD and Aerodynamic Design of 100kW Class Radial Turbine Using Waste Heat from Ship (선박 폐열을 이용한 100kW급 구심터빈 공력설계 및 CFD에 의한 성능해석)

  • Mo, Jang-Oh;Kim, You-Taek;Kim, Mann-Eung;Oh, Cheol;Kim, Jeong-Hwan;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.175-181
    • /
    • 2011
  • The purpose of this study is to secure the design data for the optimization of the radial turbine and heat cycle system, by using the CFD analysis technique and the design of 100kW class radial turbine applicable to waste heat recovery generation system for ship. Radial turbine was comprised of scroll casing, vane nozzle with 18 blades and rotor with 13 blades, and analysis grid was used to about 2.3 million. Mass flow rate and rotational speed was 0.5kg/s, 75,0000rpm, respectively. Eight kinds of inlet pressure was set between 195 and 620kPa. As the flow accelerated through the nozzle passage to the throat, the pressure level at the pressure and suction sides becomed similar to about Mach number of 0.35. When the inlet temperature and pressure was $250^{\circ}C$, 352kPa respectively, the isentropic efficiency and mechanical power showed the analysis results of 74% and 108kW.

Effects of the design variables and their constraints on the stage performance of an axial flow turbine (축류 터빈의 설계 변수 및 설계 변수의 제한조건이 성능에 미치는 영향)

  • 박호동;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2109-2124
    • /
    • 1991
  • A simulation program is developed to analyse the performance of an axial flow turbine stage based on the meanline prediction method. The gradient projection method is utilized to minimize the aerodynamic losses under the specified constraints on such as flow coefficient, total pressure ratio, stage power and blade loading coefficient. After obtaining the optimum point for minimizing the stage loss, a sensitivity analysis is carried out ground the optimum point to find the effects of the design variables and the design constraints on the stage performance. The result of the senitivity analysis under a constant blade loading coefficient shows that the total loss is more sensitive to the mean diameter, the absolute flow angle at nozzle outlet, the relative flow angle at rotor outlet and the axial mean velocity compared to the chords and the pitches. Moreover, the design constraints on the degree of reaction at root and the blade length-to-diameter ratio are found to be most influencial on the maximization of the overall aerodynamic efficiency.

An Experimental Study on the Propagated Uncertainties on the Total-to-total Efficiency of an Axial Turbine (축류형터빈 전효율에 파급된 불확도에 관한 실험적연구)

  • 조수용;김은종
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.123-126
    • /
    • 2003
  • The uncertainties generated by measurement parameters are propagated to the uncertainty of total-to-total efficiency on an experiment. The effect of uncertainties’ propagation are analyzed through a turbine performance test. A tested 3-D axial type turbine has a 0.373 degree of reaction at the mean radius and the performance test is conducted at the low pressure and cold temperature status. The uncertainty of turbine inlet and exit total pressure shows the strong propagation effect to the uncertainty of total-to-total efficiency. This means that a high precision pressure measuring system is required to reduce the uncertainty propagated by the pressure. In the uncertainty portion of each measurement parameters to the uncertainty of total-to-total efficiency, the uncertainty by torque is the highest and the uncertainty by RPM is the lowest. In case of the total pressure, the effect of the uncertainty by torque is increased with the increasing RPM. The uncertainty of total pressure at the turbine exit shows more influence to the results than that at the turbine.

  • PDF

An Experimental Study of Surface Pressure on a Turbine Blade in Partial Admission (분사영역과 터빈익형 위치에 따른 표면압 변화에 관한 실험적 연구)

  • Choi, Hyoung-Jun;Park, Young-Ha;Kim, Chae-Sil;Cho, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.8
    • /
    • pp.735-743
    • /
    • 2011
  • In this study, the distribution of surface pressure was measured in a steady state on a turbine blade which was moved the injected region and receded the stagnation region using a linear cascade apparatus. Axial-type blades were used and the blade chord was 200mm. The rectangular nozzle was applied and its size was $200mm{\times}200mm$. The experiment was done at $3{\times}10^5$ of Reynolds number based on the chord. The surface pressures on the blade were measured at three different nozzle angles of $58^{\circ}$, $65^{\circ}$ and $72^{\circ}$ for off-design performance test. In addition, three different solidities of 1.25, 1.38 and 1.67 were applied. From the results, the low solidity caused the low pressure on the blade suction surface at entering region and the reverse rotating force was generated at the low nozzle angle. The positive incidence also made the pressure lower on the suction surface at entering region.

Geometry Design of a Pitch Controlling Type Horizontal Axis Turbine and Comparison of Power Coefficients (피치각 제어형 수평축 조류 터빈의 형상설계 및 출력계수 비교)

  • Park, Hoon Cheol;Truong, Quang-Tri;Phan, Le-Quang;Ko, Jin Hwan;Lee, Kwang-Soo;Le, Tuyen Quang;Kang, Taesam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.3
    • /
    • pp.167-173
    • /
    • 2014
  • In this work, based on the blade element-momentum theory (BEMT), we proposed the geometry of a lab-scale horizontal axis tidal turbine with a diameter of 80cm, which can demonstrate the maximum power coefficient, and investigated the effect of blade pitch angle increase on the power coefficient. For validation of the computed power coefficients by the BEMT, we also computed the power coefficient using the computational fluid dynamics (CFD) for each case. For the CFD, 15 times of the turbine radius was used for the length and diameter of the computational domain, and the open boundary condition was prescribed at the boundary of the computational domain. The maximum power coefficients of the turbine acquired by the BEMT and CFD were about 48%, showing a good agreement. Both of the power coefficients computed by the BEMT and CFD tended to decrease when the blade pitch angle increases. The two power coefficients for a given tip-speed ratio were in good agreement. Through the present study, we have confirmed that we can trust the proposed geometry and the computed power coefficients based on the BEMT.

Experimental Study of Thermo-Flow Field in a Model Gas Turbine Combustor with Various Swirl Conditions (스월변화에 따른 모형 가스터빈 연소기의 열유동장의 실험적 연구)

  • Ryu, Song-Youl;Koo, Ja-Ye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.70-76
    • /
    • 2002
  • Characteristics of kerosine spray combustion were investigated at various swirl condition. PDPA(Phase Doppler Particle Analysis) was used to measure the droplet sizes and velocities. R-type(Platinum vs. Platinum-13%rhodium) thermocouple was used to measure the temperature of combustion flow field inside model combustor. A visualization of spray and flame was performed with still camera. As swirl number increases due to increase of swirl vane angle, the spray and the flame were developed to radial direction rapidly. When swirl number is small, the configuration of flame is cone type, but swirl number is large, the configuration of flame is cylindrical type due to enhanced mixing by the transport of swirl momentum.

Performance and Internal Flow Analysis on the 80kW-Class Cross-Flow Hydro Turbine with the Variation of Effective Head (유효낙차에 따른 80kW급 횡류수차의 성능 및 내부유동 해석)

  • Choi, Young-Do;Lim, Jae-Ik;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.703-710
    • /
    • 2010
  • Recently, small hydropower attracts attention because of its clean, renewable and abundant energy resources to develop. However, suitable turbine type is not determined yet in the range of small hydropower and it is necessary to study for the effective turbine type. Therefore, a 80kW-Class cross-flow turbine is adopted in this study because of its simple structure and high possibility of applying to small hydropower. The result shows that as effective head increases, tangential and radial flow velocities increase and thus, the increased tangential velocity contributes to the increase of angular momentum and output torque.

Numerical Analysis of Flow Characteristics within Blades for Design Parameters of Impulse Supersonic Turbine Blade (충동형 초음속 터빈 익렬의 설계 변수에 따른 익렬내 유동 특성에 관한 수치적 연구)

  • 신봉근;정수인;김귀순;이은석
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.2
    • /
    • pp.62-72
    • /
    • 2004
  • In this paper. firstly, numerical results were compared with experimental results to verify accuracy of the results. It is found that the numerical results show good agreements with experimental result. Next, computations about flow within blades for design parameters such as radius of the pressure and suction side's curvature and pitch-chord ratio have been performed. It is found that the flow and performance characteristics mainly depend on shocks occurred at the leading edge of blades and the end of nozzle and separations occurred inside the flow passage. And shock of nozzle and separations depend upon area of flow passage and shocks of blade are affected by the number of blades occupied by a nozzle.