• Title/Summary/Keyword: 반감기

Search Result 530, Processing Time 0.028 seconds

An Analysis of Carbon-14 Metabolism for Internal Dosimetry at CANDU Nuclear Power Plants (중수로 원전 종사자의 방사선량 평가를 위한 $^{14}C$ 인체대사모델 분석)

  • Kim, Hee-Geun;Lee, Hyung-Seok;Ha, Gak-Hyun
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.3
    • /
    • pp.207-213
    • /
    • 2003
  • Carbon-14 is one of the major radionuclides released by CANDU Nuclear Power Plants(NPPs). It is almost always emitted as gas through the stack. From CANDU NPPs about 95% of all carbon-14 is released as carbon dioxide. Carbon-14 is a low energy beta emitter which, therefore, gives only a small skin dose from external radiation. As carbon dioxide Is physiologically rather inert gases for man's metabolism, the inhalation dose is probably less than 1 % of the ingestion dose. But this source of carbon-14, formed in a closed, nor-oxidative environment, was subsequently released into the workplace as an insoluble particulate when these systems were opened lip for re-tubing at CANDU NPPs. As a part of the improvement of dosimetry program at Wolsong Nuclear Power Plants, the carbon-14 metabolism based on references was investigated and studied to setup the internal dosimetry program due to inhalation of carbon-14.

Residues of Benomyl and Bitertanol in Apples Treated as Postharvest Fungicides under Different Storage Conditions (수확후 처리제로서 Benomyl과 Bitertanol이 처리된 사과의 저장조건에 따른 잔류량)

  • Lee, Eun-Joo;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.4
    • /
    • pp.434-441
    • /
    • 1996
  • This study was conducted to clarify the degradation pattern, safety evaluation and penetration ratio of benomyl and bitertanol to apple used as postharvest fungicides during CA(controlled atmosphere) and cold storage. In CA storage, the degradation of benomyl and bitertanol in stored apple was slow at the early stage, while that in cold storage was, on the contrary, faster at the early stage. The initial concentrations of benomyl and bitertanol in apples applied at the standard application concentrations were 2.24 and 1.54mg/kg, respectively, and their residual amounts were below the maximum residue limits, 1mg/kg at 135 and 96 days in CA storage, 115 and 70 days in cold storage, respectively. The half-lives of benomyl and bitertanol in stored apples were 124 and 130 days in CA storage, 101 and 111 days in the cold storage, respectively, indicating that the degradation was faster in cold storage than in CA storage. The residual amount of benomyl and bitertanol in stored apples was retained more in peels than in pulps of apples.

  • PDF

Effects of Soil Environmental Conditions on the Decomposition Rate of Insecticide Fenitrothion in Flooded Soils (담수토양중(湛水土壤中)에 있어서 살충제(殺蟲劑) fenitrothion의 분해속도(分解速度)에 미치는 각종(各種) 토양환경조건(土壤環境條件)의 영향)

  • Moon, Young-Hee
    • Korean Journal of Environmental Agriculture
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 1990
  • The effects of soil environmental conditions on the degradation rates of fenitrothion(O-O-dimethyl O-4-nitro-m-tolyl phosphorothioate) in soils under flooded conditions were examined in the laboratory. Fenitrothion was degraded rapidly and the half life period was within 4 days. Furthermore the degradation was mere rapid under flooded conditions than under upland conditions. The decomposition rate was varied with soils and soil temperatures. Fenitrothion degraded more slowly at 30ppm than at l0ppm. Repeated applications of fenitrothion in soils accelerated the degradation rates. The degradation remarkably increased with amendment of rice straw. However, degradation rates ,were virtually unaffected by the addition of the mixed-fertilizer, the fungicide IBP and the herbicide butachlor. The population of fenitrothion-degrading microbes, which were counted by MPN method, always corresponded with the degradation rates in the soils.

  • PDF

Dechlorination of the Fungicide Chlorothalonil by Zerovalent Iron and Manganese Oxides (Zerovalent Iron 및 Manganese Oxide에 의한 살균제 Chlorothalonil의 탈염소화)

  • Yun, Jong-Kuk;Kim, Tae-Hwa;Kim, Jang-Eok
    • The Korean Journal of Pesticide Science
    • /
    • v.12 no.1
    • /
    • pp.43-49
    • /
    • 2008
  • This study is conducted to determine the potential of zerovalent iron (ZVI), pyrolusite and birnessite to remediate water contaminated with chlorothalonil. The degradation rate of chlorothalonil by treatment of ZVI, pyrolusite and birnessite was much higher in low condition of pH. Mixing an aqueous solution of chlorothalonil with 1.0% (w/v) ZVI, pyrolusite and birnessite resulted in 4.7, 13.46 and 21.38 hours degradation half-life of chlorothalonil, respectively. Dechlorination number of chlorothalonil by treaonent of ZVI, pyrolusite and birnessite exhibited 2.85, 1.12 and 1.09, respectively. Degradation products of chlorothalonil by teartment of pyrolusite and birnessite were confirmed as trichloro-1,3-dicyanobenzene and dichloro-1,3-dicyanobenzene which were dechlorinated one and two chlorine atoms from parent chlorothalonil by GC-mass. Degradation products of chlorothalonil by ZVI were identified not only as those by pyrolusite and birnessite but as further reduced chloro-1,3-dicyanobenzene and chlorocyanobenzene.

Inhibition of entry of Toxoplasma gonldii into MDCK cells by fetal bovine serum (Tomplasma gondii의 숙주세포 침투를 억제하는 우태아혈청 성분)

  • 남호우;김동진
    • Parasites, Hosts and Diseases
    • /
    • v.31 no.4
    • /
    • pp.379-381
    • /
    • 1993
  • We experienced the partial Inhibition of entry of Taxoplasma gondii Into MDCK cells when the FBS was depleted from media. MDCK cells and Toxoplasma (RH strains) were co-cultured, the penetration was inhibited up to 60-80% with concentration-dependence of FBS. Inhibitory effect was clear when the conc. of FBS was over 1% (v/v) with 50% inhibition comic. of 5%. When ToxopLosma was pre-incubated with FBS and then applied to MDCK cells, there were no inhibitory effect, but when FBS was added to Toxoplasma- MDCK co-culture, the time of adding was c10cal with rapid inhibition. And when FBS was further treated with heat ($95^{\circ}C$, 10 min), the Inhibitory effect was decreased slightiy in both raw and inactivated FBS. The FBS factor(s) might participate to neutralize secreted materials which enhancing penetration or Intervene between receptor-ligand blnding at the moment of entry through sterically rather than functionally.

  • PDF

Effective Half-life of I-131 in Patients with Differentiated Thyroid Cancer Treated by Radioactive I-131 (I-131 치료를 받은 분화갑상선암 환자에서 I-131의 유효반감기)

  • Park, Seok-Gun
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.6
    • /
    • pp.464-468
    • /
    • 2008
  • Purpose: Effective half life of I-131 ($T_{eff}$) in patients with differentiated thyroid cancer treated by I-131 is must-know value for dose calculation and determination of release time from isolation room. There has been no report about $T_{eff}$ in Koreans. Thus, author tried to measure dose rate without radiation exposure to faculty members and calculated $T_{eff}$. Methods: Probe of radiation survey meter was fixed at the wall of isolation room, and body of survey meter was placed outside the room. With this simple arrangement, author could measure radiation frequently without radiation exposure to faculty members in 68 patient (F=55, M=13, age=$47{\pm}13.7$) treated by I-131 ($3.7{\sim}7.4\;GBq$) for differentiated thyroid cancer from Jan 2006 to Dec 2006. From this data, $T_{eff}$, 48 hr retention rate, and the time necessary to whole body retention of I-131 become less than 1.1 GBq were calculated. Serum creatinine levels were measured before and after thyroid hormone withdrawal. Results: $T_{eff}$ was $15.4{\pm}4.3\;hr$ ($9.4{\sim}32.5\;hr$). There was a loose correlation between $T_{eff}$ and serum creatinine concentration (r=0.45). 48hr retention was $4.9{\pm}4.2%$ ($1{\sim}23%$). Time necessary to whole body retention of I-131 become less than 1.1 GBq was calculated as $47.1{\pm}13.2\;hr$ for 9.25 GBq, $42.1{\pm}11.9\;hr$ for 7.4 GBq, $35.7{\pm}10.0\;hr$ for 5.55 GBq, and $26.7{\pm}7.5\;hr$ for 3.7 GBq dose of I-131. Conclusion: Author successfully measured radiation dose rates in isolated patients treated by high dose of I-131 without radiation exposure to the faculty members with simple arrangement of survey meter probe. Using those data, $T_{eff}$ and some other indices were calculated.

A Case Study about Counting Uncertainty of Radioactive Iodine (131I) in Public Waters by Using Gamma Spectrometry (감마분광분석을 이용한 환경 중 방사성요오드(131I)의 측정 불확도에 관한 사례 연구)

  • Cho, Yoonhae;Seol, Bitna;Min, Kyoung Ok;Kim, Wan Suk;Lee, Junbae;Lee, Soohyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.1
    • /
    • pp.42-46
    • /
    • 2016
  • The radioactive iodine ($^{131}I$) presents in the environment through the excrete process of nuclear medicine patients. In the detecting of low level of $^{131}I$ in the public water, the counting uncertainty has an effect on the accuracy and reliability of detecting $^{131}I$ radioactivity concentration. In this study, the contribution of sample amount, radioactivity concentration and counting time to the uncertainty was investigated in the case of public water sample. Sampling points are public water and the effluents of a sewage treatment plant at Sapkyocheon stream, Geumgang river. In each point, 1, 10 and 20 L of liquid samples were collected and prepared by evaporation method. The HPGe (High Purity Germanium) detector was used to detect and analyze emitted gamma-ray from samples. The radioactivity concentration of $^{131}I$ were in the range of 0.03 to 1.8 Bq/L. The comparison of the counting uncertainty of the sample amount, 1 L sample is unable to verify the existence of the $^{131}I$ under 0.5 Bq/L radioactivity concentration. Considering the short half-life of $^{131}I$ (8.03 days), a method for measuring 1 L sample was used. However comparing the detecting and preparing time of 1, 10 L respectively, detecting 10 L sample would be an appropriate method to distinguish $^{131}I$ concentration in the public water.

Evaluation of $^{14}C$ Behavior Characteristic in Reactor Coolant from Korean PWR NPP's (국내 경수로형 원자로 냉각재 중의 $^{14}C$ 거동 특성 평가)

  • Kang, Duk-Won;Yang, Yang-Hee;Park, Kyong-Rok
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • This study has been focused on determining the chemical composition of $^{14}C$ - in terms of both organic and inorganic $^{14}C$ contents - in reactor coolant from 3 different PWR's reactor type. The purpose was to evaluate the characteristic of $^{14}C$ that can serve as a basis for reliable estimation of the environmental release at domestic PWR sites. $^{14}C$ is the most important nuclide in the inventory, since it contributes one of the main dose contributors in future release scenarios. The reason for this is its high mobility in the environment, biological availability and long half-life(5730yr). More recent studies - where a more detailed investigation of organic $^{14}C$ species believed to be formed in the coolant under reducing conditions have been made - show that the organic compounds not only are limited to hydrocarbons and CO. Possible organic compounds formed including formaldehyde, formic acid and acetic acid, etc. Under oxidizing conditions shows the oxidized carbon forms, possibly mainly carbon dioxide and bicarbonate forms. Measurements of organic and inorganic $^{14}C$ in various water systems were also performed. The $^{14}C$ inventory in the reactor water was found to be 3.1 GBq/kg in PWR of which less than 10% was in inorganic form. Generally, the $^{14}C$ activity in the water was divided equally between the gas- and water- phase. Even though organic $^{14}C$ compound shows that dominant species during the reactor operation, But during the releasing of $^{14}C$ from the plant stack, chemical forms of $^{14}C$ shows the different composition due to the operation conditions such as temperature, pH, volume control tank venting and shut down chemistry.

  • PDF

Cooling Time Determination of Spent Nuclear Fuel by Detection of Activity Ratio $^{l44}Ce /^{l37}Cs$ (방사능비 $^{l44}Ce /^{l37}Cs$ 검출에 의한 사용후핵연료 냉각기간 결정)

  • Lee, Young-Gil;Eom, Sung-Ho;Ro, Seung-Gy
    • Nuclear Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.237-247
    • /
    • 1993
  • Activity ratio of two radioactive primary fission products which had sufficiently different half-lives was expressed as functions of cooling time and irradiation histories in which average burnup, irradiation time, cycle interval time and the dominant fissile material of the spent fuel were included. The gamma-ray spectra of 36 samples from 6 spent PWR fuel assemblies irradiated in Kori unit-1 reactor were obtained by a spectrometric system equipped with a high purity germanium gamma-ray detector. Activity ratio $^{l44}$Ce $^{l37}$Cs, analyzed from each spectrum, was used for the calculation of cooling time. The results show that the radioactive fission products $^{l44}$Ce and $^{l37}$Cs are considered as useful monitors for cooling time determination because the estimated cooling time by detection of activity ratio $^{l44}$Ce $^{l37}$Cs agreed well with the operator declared cooling time within relative difference of $\pm$5 % despite the low counting rate of the gamma-ray of $^{l44}$Ce (about 10$^{-3}$ count per second). For the samples with several different irradiation histories, the determined cooling time by modeled irradiation history showed good agreement with that by known irradiation history within time difference of $\pm$0.5 year. From this result, it would be expected to be possible to estimate reliably the cooling time of spent nuclear fuel without the exact information about irradiation history. The feasibility study on identification of and/or sorting out spent nuclear fuel by applying the technique for cooling time determination was also performed and the result shows that the detection of activity ratio $^{l44}$Ce $^{l37}$Cs by gamma-ray spectrometry would be usefully applicable to certify spent nuclear fuel for the purpose of safeguards and management in a facility in which the samples dismantled or cut from spent fuel assemblies are treated, such as the post irradiation examination facility.mination facility.

  • PDF

Effect of Temperature on Amino-Carbonyl Reaction (Amino-Carbonyl 반응(反應)에 미치는 온도(溫度)의 영향(影響))

  • Kim, Yong-Nyun;Kim, Chang-Mok;Han, Kang-Wan;Oh, Sung-Ki
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.11 no.1
    • /
    • pp.51-56
    • /
    • 1982
  • The thermal degradation of 0.05M glucose-arginine model system was occurred during heat treatment for 0$\sim$7 hours at $60{\sim}120^{\circ}C$. and the melanoid in formation was investigated as a function of temperature. The decomposition reaction of glucose and arginine, as well as the reaction of melanoidin formation, followed first-order kinetics, except the reaction at $120^{\circ}C$. and the rate constants ($hr^{-1}\times 10^3$) of those reactions were ranged from 14.20 to 837. 10. Temperature dependence of the rate constants was characterized by the Arrhenius equation, except the reaction at $120^{\circ}C$. The ranges of activation energy and $Q_{10}$ values were 12.122$\sim$18.142 kcal/mole and 1.65$\sim$2.12, respectively.

  • PDF