Effective Half-life of I-131 in Patients with Differentiated Thyroid Cancer Treated by Radioactive I-131

I-131 치료를 받은 분화갑상선암 환자에서 I-131의 유효반감기

  • Park, Seok-Gun (Nuclear Medicine Department, College of Medicine, Dankook University)
  • 박석건 (단국대학교의과대학 핵의학교실)
  • Published : 2008.12.31

Abstract

Purpose: Effective half life of I-131 ($T_{eff}$) in patients with differentiated thyroid cancer treated by I-131 is must-know value for dose calculation and determination of release time from isolation room. There has been no report about $T_{eff}$ in Koreans. Thus, author tried to measure dose rate without radiation exposure to faculty members and calculated $T_{eff}$. Methods: Probe of radiation survey meter was fixed at the wall of isolation room, and body of survey meter was placed outside the room. With this simple arrangement, author could measure radiation frequently without radiation exposure to faculty members in 68 patient (F=55, M=13, age=$47{\pm}13.7$) treated by I-131 ($3.7{\sim}7.4\;GBq$) for differentiated thyroid cancer from Jan 2006 to Dec 2006. From this data, $T_{eff}$, 48 hr retention rate, and the time necessary to whole body retention of I-131 become less than 1.1 GBq were calculated. Serum creatinine levels were measured before and after thyroid hormone withdrawal. Results: $T_{eff}$ was $15.4{\pm}4.3\;hr$ ($9.4{\sim}32.5\;hr$). There was a loose correlation between $T_{eff}$ and serum creatinine concentration (r=0.45). 48hr retention was $4.9{\pm}4.2%$ ($1{\sim}23%$). Time necessary to whole body retention of I-131 become less than 1.1 GBq was calculated as $47.1{\pm}13.2\;hr$ for 9.25 GBq, $42.1{\pm}11.9\;hr$ for 7.4 GBq, $35.7{\pm}10.0\;hr$ for 5.55 GBq, and $26.7{\pm}7.5\;hr$ for 3.7 GBq dose of I-131. Conclusion: Author successfully measured radiation dose rates in isolated patients treated by high dose of I-131 without radiation exposure to the faculty members with simple arrangement of survey meter probe. Using those data, $T_{eff}$ and some other indices were calculated.

목적 : I-131 치료를 받는 분화갑상선압 환자에서 I-131의 유효반감기($T_{eff}$)는 투여량의 계산이나 격리치료의 기간을 결정하기 위해서는 알아야 할 값 중 하나이다. 그러나 $T_{eff}$를 계산하려면 자주 선량을 측정해야 하기 때문에 측정하는 사람의 방사선노출이 문제가 된다. 이런 이유로 아직 한국인에서 $T_{eff}$값은 찾기 어렵다. 측정하는 사람에 대한 방사선 노출 없이 연속적으로 선량 변화를 측정하고, 이로부터 $T_{eff}$와 48시간 체내잔류량, 1.1 GBq이하가 될 때까지의 시간을 계산하고자 하였다. 방법: 방사선 선량계의 탐침은 격리치료실 안의 벽에 고정하고, 선량계는 밖에서 읽도록 하는 간단한 방법을 사용하였다. 2006년 1월부터 12월까지 I-131 치료($3.7{\sim}7.4\;GBq$)를 받은 분화갑상선 환자 68명(여=55, 남=13, 연령=$47{\pm}13.7$)에서 격리치료실 입원 중 선량변화를 측정하였다. 이 값을 가지고 개인용 컴퓨터의 스프레드시트 프로그램을 사용하여 $T_{eff}$를 계산하였다. 모든 환자에서 혈중 크레아티닌 농도를 측정하였다. 결과: $T_{eff}$$15.4{\pm}4.3$ ($9.4{\sim}32.5$)시간이었다. $T_{eff}$는 혈중 크레아티닌이 증가할수록 길어지는 경향은 있었으나, 상관계수는 높지 않았다(r=0.45). 48시간 후 남은 양은 $4.9{\pm}4.2$ ($1{\sim}23$)%였다. 전신에 남은 양이 1.1GBq 이하가 될 때까지의 시간은, 9.25GBq를 투여한다고 가정했을 때에는 $47.1{\pm}13.2$시간, 7.4 GBq일 때 $42.1{\pm}11.9$시간, 5.55 GBq일 때 $35.7{\pm}10$시간, 3.7 GBq일 때 $26.7{\pm}7.5$시간으로 계산되었다. 결론: 선량계의 탐침과 몸체를 분리하는 간단한 방법으로 측정하는 사람의 방사선노출이 없이 격리치료실에 입원한 환자의 선량변화를 연속적으로 측정할 수 있었고, 유도된 곡선으로부터 $T_{eff}$를 계산했다. 이 값을 이용하여 48시간 체내잔류량과 투여한 양이 1.1 GBq 이하가 될 때까지의 시간을 계산하였다.

Keywords

References

  1. Shong YK. Treatment of differentiated thyroid cancer. Korean J Nucl Med 2002;36:77-97
  2. Kim YK, Chung JK, Kim SK, Yeo JS, Park DJ, Jeong JM et al. Results of radioiodine treatment for distant metastases of differentiated thyroid cancer. Korean J Nucl Med 2000;34:107-18
  3. Kim JC, Yoon JH, Bom HS, Jaegal YJ, Son HC, Min JJ et al. Development and assessment individual maximum permissible dose method of I-131 therapy in high risk patients with differentiated papillary thyroid cancer. Korean J Nucl Med 2003; 37:110-9
  4. North D, Shearer DR, Hennessey JV, Donovan GL. Effective half-life of 131I in thyroid cancer patients. Health Physics 2001;81:325-9 https://doi.org/10.1097/00004032-200109000-00013
  5. Driedger AA, Quirk S, McDonald TJ, Ledger S, Gray D, Wall W et al. A pragmatic protocol for I-131 rhTSH-stimulated ablation therapy in patients with renal failure. Clin Nucl Med 2006;31:454-7 https://doi.org/10.1097/01.rlu.0000227013.36421.ce
  6. Luster M, Sherman SI, Skarulis M, Reynolds JR, Lassmann M, Hanscheid H, Reiners C. Comparison of radionuclide biokinetics following the administration of recombinant human thyroid stimulating hormone and after thyroid hormone withdrawal in thyroid carcinoma. Eur J Nucl Med Mol Imaging 2003;30: 1371-7 https://doi.org/10.1007/s00259-003-1230-1
  7. Cormack J, Shearer J. Calculation or radiation exposures from patients to whom radioactive materials have been administered. Phys Med Biol 1998;43:501-16 https://doi.org/10.1088/0031-9155/43/3/003
  8. Kaptein EM, Levenson H, Siegel ME, Gadallah M, Akamal M.. Radioiodine dosimetry in patients with end-stage renal disease receiving ambulatory peritoneal dialysis therapy. J Clin Endocrinol Metab 2000;85:3058-64 https://doi.org/10.1210/jc.85.9.3058
  9. Yu MD, Huang WS, Cherng CC, Shaw SM. The effect of formulation on reduced radioiodide thyroid uptake. J Nucl Med 2002:43;56-60
  10. Kim MS, Jeong NI, Lee JY, Kim CS, Kim CH, Lee MC et al. Physical dosimetry in radioactivie iodine treatment in the patients with thyroid cancer. Korean J Nucl Med 1994;28: 124-32
  11. Grigsby PW, Siegel BA, Baker S, Eichling JO. Radiation exposure from outpatient radioactive iodine therapy for thyroid carcinoma. JAMA 2000;283:2272-4 https://doi.org/10.1001/jama.283.17.2272
  12. Hanscheid H, Lassmann M, Luster M, Thomas SR, Pacini F, Ceccarelli C et al. Iodine biokinetcs and dosimetry in radioiodine therapy of thyroid cancer: procedures and results of a prospective international controlled study of ablation after rhTSH or hormone withdrawal. J Nucl Med 2006;47:648-54
  13. Venencia CD, Germanier AG, Bustos SR, Gionvanni AA. Hospital discharge of patient with thyroid carcinoma treated with 131I. J Nucle Med 2002;43:61-5
  14. Park HM, Jang JW, Yang HC, Kim YG. Outpatient radiation therapy for thyroid cancer patients with minimal radiation exposure to the family members. Nuc Med Mol Imaging 2007: 41;218-25