• 제목/요약/키워드: 박막 제조 공정

검색결과 680건 처리시간 0.029초

특성 예측 수식모델과 이를 이용한 박막의 특성 제어

  • 정재인;양지훈;장승현;박혜선
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.146-146
    • /
    • 2010
  • 진공이나 특정 가스 분위기 또는 플라즈마를 이용하여 박막을 제조하는 방법은 공정 조건에 따라 그 특성이 현저히 달라지며 대부분의 경우 제조된 박막에 대한 성분 및 조직의 분석과 박막이 구현하는 특성을 파악한 후 공정 조건을 최적화하게 되는 번거로움이 있다. 특히, 박막 제조 시스템에 따라 제조되는 박막이 특성이 달라지거나 원하는 공정조건에서 원하는 특성의 박막을 얻지 못하는 경우가 종종 발생하고 있다. 한편, 최근의 박막 제조 기술은 결정립 미세화 및 나노화, 다층화, 다성분계 박막 등을 통해 다기능을 구현하는 연구가 활발히 진행되고 있다, 이러한 다기능성 박막을 제조하기 위해서는 박막의 조직제어 기술과 함께 특성을 예측하고 제어하는 기술이 필요하게 된다. 본 연구에서는 상기의 문제점을 근본적으로 해결하고 다기능성 박막의 특성을 예측하고 제어하기 위한 코팅 수식모델을 개발하고 이를 응용하는데 필요한 시스템 구성에 대한 연구를 진행하였다. 코팅 수식 모델은 정해진 물질계의 각 공정별 특성 데이터를 이용하여 내삽 또는 외삽을 통해 수식화하였으며 이를 바탕으로 특성을 예측하는 프로그램을 개발하였고, 시스템에 따른 차이를 줄이기 위해 플라즈마 진단장치를 이용하여 시스템을 동기화시키는 작업을 진행하였다. 이러한 수식 모델을 바탕으로 TiN 피막의 특성예측 및 제어에 대한 기초연구를 소개한다.

  • PDF

CIGS 박막태양전지 제조기술 이슈분석

  • 전찬욱
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.23-23
    • /
    • 2010
  • CIGS 박막태양전지는 박막태양전지 기술 중 가장 주목을 받고 있는 기술에 해당한다. 그 이유는 박막태양전지 기술 중 즉, CdTe, a-Si, CIGS 중 가장 셀 효율이 높게 구현되고 있으며, 특히 다양한 제조공정이 가능하기 때문이다. 현재 CIGS 박막태양전지 양산에 적용되고 있는 제조기술은 동시증발법과 스퍼터/셀렌화 공정이다. 동시증발법의 경우, CIGS 태양전지의 세계최고효율을 구현한 기술로서 다른 모든 제조기술의 기준이 되는 공정이나, 실제로는 스퍼터/셀렌화 공정을 이용한 양산 규모가 훨씬 크게 전개되고 있다. 본 논문에서는 동시증발법이 최고효율을 구사한 물질 및 공정 스펙에 대해 살펴보고, 스퍼터/셀렌화 공정에서 동시증발법에 의해 제조된 소자 스펙을 구현하기 위해 어떠한 노력을 기울여야 하는 지에 대해 기술하고자 한다. 먼저, 동시증발법이 적용된 양산기술 현황에 대해 살펴보고, 여러가지 스펙 중에서 Na 제어기술, 버퍼층 기술, 투명전극 측면에서 소자성능의 최적화를 논하고자 한다. Na의 경우, 널리 알려진 바와 같이 CIGS 내 0.1at% 정도의 함유량이 필요하다. 동시증발법과는 다른 공정온도와 이력이 사용되는 스퍼터/셀렌화의 경우, Na 함량의 제어를 위해 어떠한 노력이 필요한지 Na의 역할 측면에서 논하고자 한다. CBD 공정으로 제조되고 있는 CdS는 얇은 두께와 단순한 공정으로 인해 다소 소홀하기 쉬우나, CdS/CIGS 접합이 소자의 성능에 미치는 영향이 매우 크기 때문에 CIGS 표면 물성 제어 측면에서 CdS 제조공정을 살펴보고자 한다. 마지막으로 투명전극은 CIGS 제조공정과는 무관하게 공통으로 검토가 필요한 분야이나, 동시 증발법에 의한 CIGS 표면형상이 스퍼터/셀렌화에 의한 CIGS와는 크게 다르므로 후속 투명전극공정 또한 세부적인 검토가 필요하다고 판단되는 바, 투명전극이 갖춰야하는 물성을 중심으로 소자최적화를 논하고자 한다.

  • PDF

CuInGaSe2 단일 타겟을 이용한 대면적 CIGS 스퍼터링 박막의 특성 (Characteristics of large-area CIGS thin films fabricated by sputtering CuInGaSe2 single target)

  • 김태원;김영백;송상인;박재철
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.125.2-125.2
    • /
    • 2011
  • CuInGaSe2 (CIGS)을 포함한 Chalcopyrite계 물질은 직접천이형 반도체이면서, ${\sim}1{\times}10^5cm^{-1}$ 이상의 광흡수계수를 보이며, 조성제어를 통한 밴드갭 조절이 가능해 차세대 고효율 박막태양전지재료로 매우 주목받고 있다. 최근, CIGS 박막태양전지 제조를 위해 CIGS 흡수층의 여러 가지 박막제조 공정들이 개발되고 있으나, 동시증착법과 소위 2단계법이라 일컬어지는 금속 전구체 스퍼터링 증착 후 셀렌화 공정을 가장 대표적인 공정이라 말 할 수 있다. 동시증착법은 실험실 수준의 소면적 셀에서 20%에 가까운 높은 효율의 CIGS 박막태양전지 제조에 성공하였음에도 불구하고, 상용화를 위한 대면적 셀 제조를 위해 해결해야 할 문제들이 아직 남아있다. 또한, 2단계법의 경우는 스퍼터링 공정을 기반으로 대면적 셀 제조에는 용이하나, CIGS/Mo 계면에서의 Ga 응집현상의 발생 및 셀렌화 공정에 사용되는 독성가스($H_2Se$)의 문제 등이 남아 있어 새로운 시각에서의 접근 방법이 요구되고 있다. 본 연구에서는 CIGS 4성분계 단일 타겟을 사용, RF 스퍼터링 공정을 통해 $200{\times}200mm^2$ 기판 위에 CIGS 박막을 제조하여 그 특성을 분석하였다. XRD 분석결과, 동시증착법에서 일반적으로 관찰되는 CIGS/Mo 계면에서의 $MoSe_2$ 상의 존재는 관찰되지 않았으며, CIGS 단일상의 다결정 박막이 제조되었음을 알 수 있었다. 또한, CIGS 박막제조 후, RTA 공정을 통해 CIGS 박막의 결정성이 향상됨을 관찰 할 수 있었으며, SIMS 분석결과, Mo층의 공정 조건에 따라 CIGS/Mo 계면에서의 금속원소 (In, Ga, Mo)의 상호확산이 크게 억제됨을 알 수 있었다. 그 외의 특성평가 결과들을 통하여 CIGS 4성분계 단일 타겟을 사용한 CIGS 박막태양전지 제조의 유용성에 대해 논의하고자 한다.

  • PDF

알루미늄 박막의 제조와 산업적 응용에 대한 고찰 (The study on the preparation methods and industrial applications of aluminum thin films)

  • 정재인;양지훈
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2015년도 춘계학술대회 논문집
    • /
    • pp.111-111
    • /
    • 2015
  • 알루미늄 박막은 광학부품의 코팅과 Mirror 제조는 물론 철강이나 항공기 부품의 내식성 코팅이나 반도체 및 디스플레이 소자의 전극 등에 이용되어 산업적 응용이 가장 넓은 박막의 하나이다. 알루미늄 박막은 주로 진공증착 방법으로 제조하는데 제조 공정에 따라 그 특성이 현저히 달라지는 특성이 있다. 본 논문에서는 알루미늄 박막의 제조 공정에 대해 고찰하고 공정에 따른 특성과 응용분야에 대해 고찰하고자 하였다.

  • PDF

초정밀 저항용 박막제조에 미치는 스퍼터 공정변수의 영향 (The effect of the sputtering parameters on fabricating the precision thin film)

  • 박구범;조기선;이붕주;이덕출
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.158-160
    • /
    • 2002
  • 초정밀 박막저항을 제조하기 위하여, 3원계 5lwt%Ni-4lwt%Cr-8wt%Si 합금 타겟(Target)을 가지고 DC/RF 마그네트론 스퍼터를 이용하여 박막 저항을 제조하였고. 낮은 저항온도계수(TCR)를 가지는 박막을 만들기 위해 스퍼터링 제조공정의 변화에 따른 박막의 미세구조와 전기적인 특성을 조사하였다. 스퍼터링 제조공정 변수로써 스퍼터링 Power를 변화시켰고. 제조된 박막은 공기 중에서 400[$^{\circ}C$]까지 열처리하였다. 반응압력을 감소시킴에 따라 TCR값은 감소하였고, 기판온도 및 열처리 온도의 증가에 따라 TCR값도 증가하였다. 또한. 저항온도계수값은 DC와 RF의 변화에 따라 +52, -25(ppm/$^{\circ}C$)의 TCR값을 나타냈다 이와 같은 결과로부터 제조공정을 변화시킴에 따라 면저항 및 저항 온도계수의 제어가 가능함을 알 수 있었다.

  • PDF

CIGS 박막 태양전지 개발동향 및 발전방향

  • 윤재호
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.21-21
    • /
    • 2010
  • CIGS 박막 태양전지는 저가 기판의 사용, 원소재 소비가 적은 박막 증착, 연속공정 적용 등으로 인해 결정질 실리콘 태양전지에 비해 제조단가가 낮다. 변환효율의 경우 실험실 수준에서 최고 20%의 효율이 보고되고 있어 다결정 실리콘 태양전지와 견줄 만하다. 따라서 CIGS 박막 태양전지는 제조단가와 효율 면에서 매우 우수한 경쟁력을 가진 태양전지로 인식되고 있다. 일반적으로 CIGS 박막 태양전지는 Substrate/Mo전극/CIGS 광흡수층/CdS 버퍼층/ZnO 투명전극의 기본 구조를 가지고 있으며 다양한 공정과 디자인을 적용하여 제품이 생산되고 있다. 다양한 소재와 공정들 가운데에서 유리 소재를 기판으로 사용하면서 진공증발이나 스퍼터링과 같은 Physical Vapour Deposition(PVD)을 적용하여 CIGS 광흡수층을 제조하는 기술이 가장 보편적으로 적용되고 있다. 즉 상용화에 가장 근접해 있는 기술이라고 할 수 있으며 현재는 대량생산체제 구축을 위한 기술 개발이 진행되고 있다. 또한 종래의 기판소재와 광흡수층 제조 공정의 단점을 극복하기 위한 기술들도 개발되고 있다. 특히 유리 기판 소재를 금속이나 폴리머 소재를 대체하는 기술, PVD 공정이 아닌 비진공 공정을 적용하여 CIGS 광흡수층을 제조하는 기술 등은 응용성과 제조 단가 측면에서의 파급력이 크다고 할 수 있다. 본 발표에서는 저가 고효율 CIGS 박막 태양전지 개발을 위한 이슈들을 정리하고, 이를 해결하기 위한 국내외의 연구 개발 동향을 살펴보고자 한다. 또한 이를 바탕으로 하여 CIGS 박막 태양전지의 발전방향에 대해서 전망하고자 한다.

  • PDF

DC Pulsed Magnetron Sputtering 법으로 제조된 B-C 박막과 B-C/DLC 다층막의 물성에 관한 연구

  • 김강삼;조용기
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.311-311
    • /
    • 2012
  • Boron carbide (B-C) 박막은 높은 경도, 열적 안전성, 화학적 안전성이 우수한 하드 코팅 소재로 사용되고 있다. 우수한 특성을 가지는 B-C 박막에 대한 연구는 B4C 비전도성 타겟을 이용하여 RF Sputtering 법으로 증착 공정변수에 대해서 박막의 물성에 관해 일부 연구자들이 진행하였으나, Pulsed dc margnetron sputtering 법으로 증착 공정변수에 대한 물성의 연구는 미진하였다. 반면에, DLC 박막은 우수한 특성을 가지는 하드 코팅 소재이나 400도 이상에서는 내열성이 떨어지는 단점을 가지고 있다. 연구에서는 B-C 박막의 내열성이 우수한 특성을 이용하여 DLC 박막의 내열성을 높이기 위한 목적으로 B-C 박막과 DLC 박막을 다층막으로 제조함으로서 DLC 박막을 구조적으로 안정화를 시키고자 하였다. 그리고 비전도성 B4C 타겟으로 Pulsed dc 마그네트론 스퍼터링법을 이용하여 증착기술을 개발하기 위해서 공정압력과 인가전력에 따른 B-C 박막을 제조하여 그 물성을 조사하였고, B-C/DLC 다층막을 제조하여 DLC 박막의 내열성을 증가시키고자 하였다. B-C 박막과 B-C/DLC 다층막의 경도와 탄성율은 나노인덴테이션과 마이크로 비커스를 이용하였으며, 박막의 성장구조와 박막의 구조를 조사하기 위해 SEM과 FTIR 및 XRD 을 이용하여 측정하였다.

  • PDF

박막의 성장 및 특성과 공정변수와의 상관성 도출

  • 정재인;양지훈
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.264-264
    • /
    • 2010
  • 물리증착이나 화학증착으로 제조되는 박막은 공정 조건에 따라 다양한 성장 양태를 보인다. 박막의 성장은 초기에 Seed가 형성되어 그 Seed를 바탕으로 성장하는 것으로 알려져 있으며 기판온도, 이온충돌, 박막의 두께 등에 따라 성장양태나 성장방위 등이 달라진다. 최근 나노에 대한 관심이 높아지면서 진공증착으로 제조한 박막에서도 조직의 나노화에 대한 관심이 높아지고 있으며 특히, Pore-free, Defect-free 박막의 형성을 통해 특성을 향상시키고자 하는 연구도 증가하고 있다. 본 연구에서는 Al과 Cu 같은 금속의 박막을 제조함에 있어서 공정변수가 박막의 조직이나 배향성 등에 미치는 영향을 조사하였다. 특히, 이러한 조직변화와 박막의 특성과의 상관성을 도출하고자 하였다. Al 박막에서는 이온빔의 효과와 함께 공정중에 산소 가스를 주입하거나 플라즈마 처리를 통해 성장조직의 변화를 유도하였고, Cu 박막에서는 고속 증착 조건이 피막의 조직에 미치는 영향을 조사하였다. 한편, TiN 박막의 형성에 미치는 이온빔의 효과를 조사하여 이온빔 조건과 TiN 박막의 형성과의 관계를 규명하였고 이로부터 Normalized Energy가 TiN 박막의 색상에 미치는 영향을 도출하여 Normalized Energy가 Fundamental Parameter가 될 수 있음을 확인하였다.

  • PDF

LCD 제조 공정 개발 (The Development of the Process for LCD Fabrication)

  • 허창우
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2008년도 추계종합학술대회 B
    • /
    • pp.583-587
    • /
    • 2008
  • 본 연구는 LCD 용 비정질 실리콘 박막 트랜지스터의 제조공정에서 가장 중요한 광 식각 공정을 중심으로 전체 공정을 개발하고, 공정의 안정성을 개선하여 소자의 신뢰성을 높이고자 한다. 본 연구의 수소화 된 비정질 실리콘 박막 트랜지스터는 Inverted Staggered 형태로 게이트 전극이 하부에 있다. 실험 방법은 게이트전극, 절연층, 전도층, 에치스토퍼 및 포토레지스터층을 연속 증착한다. 스토퍼층을 게이트 전극의 패턴으로 남기고, 그 위에 $n^+a-Si:H$ 층 및 NPR(Negative Photo Resister)을 형성시킨다. 상부 게이트 전극과 반대의 패턴으로 NPR층을 패터닝하여 그것을 마스크로 상부 $n^+a-Si:H$ 층을 식각하고, 남아있는 NPR층을 제거한다. 그 위에 Cr층을 증착한 후 패터닝하여 소오스-드레인 전극을 위한 Cr층을 형성시켜 박막 트랜지스터를 제조한다. 여기서 각 박막의 패터닝은 광 식각 공정으로 각 단위 박막의 특성에 맞는 광식각 공정이 필요하다. 제조한 박막 트랜지스터에서 가장 흔히 발생되는 문제는 주로 광식각공정시 발생하며, PR의 잔존이나 세척 시 얇은 화학막이 표면에 남거나 생겨서 발생되기도 하며, 이는 소자를 파괴시키는 주된 원인이 될 수 있다. 이와 같이 공정에 보다 엄격한 기준의 PR 패터닝, 박막의 식각 그리고 세척 등의 처리공정을 정밀하게 조절하여 소자의 특성을 확실히 개선 할 수 있었다.

  • PDF

TFT-LCD의 식각 공정 개발 (The Development of Etching Process of TFT-LCD)

  • 허창우
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2008년도 추계종합학술대회 B
    • /
    • pp.575-578
    • /
    • 2008
  • 본 연구는 LCD 용 비정질 실리콘 박막 트랜지스터의 제조공정중 가장 중요한 식각 공정에서 각 박막의 특성에 맞는 습식 및 건식식각공정을 개발하여 소자의 특성을 안정시키고자 한다. 본 연구의 수소화 된 비정질 실리콘 박막 트랜지스터는 Inverted Staggered 형태로 게이트 전극이 하부에 있다. 실험 방법은 게이트전극, 절연층, 전도층, 에치스토퍼 및 포토레지스터 층을 연속 증착한다. 스토퍼층을 게이트 전극의 패턴으로 남기고, 그 위에 $n^+$a-Si:H 층 및 NPR(Negative Photo Resister)을 형성시킨다. 상부 게이트 전극과 반대의 패턴으로 NPR층을 패터닝하여 그것을 마스크로 상부 $n^+$a-Si:H 층을 식각하고, 남아있는 NPR층을 제거한다. 그 위에 Cr층을 증착한 후 패터닝하여 소오스-드레인 전극을 위한 Cr층을 형성시켜 박막 트랜지스터를 제조한다. 여기서 각 박막의 패터닝은 식각 공정으로 각 단위 박막의 특성에 맞는 건식 및 습식식각 공정이 필요하다. 제조한 박막 트랜지스터에서 가장 흔히 발생되는 문제는 주로 식각 공정시 over 및 under etching 이며, 정확한 식각을 위하여 각 박막에 맞는 식각공정을 개발하여 소자의 최적 특성을 제공하고자한다. 이와 같이 공정에 보다 엄격한 기준의 건식 및 습식식각 공정 그리고 세척 등의 처리공정을 정밀하게 실시하여 소자의 특성을 확실히 개선 할 수 있었다.

  • PDF