• Title/Summary/Keyword: 박리 주파수

Search Result 33, Processing Time 0.027 seconds

Experimental Investigation of Noise Generation from the Inter-coach Spacing of a High-speed Train (고속열차의 차간 공간에서 발생하는 소음 특성의 시험적 규명)

  • Choi, Sung-Hoon;Park, Choon-Soo;Park, Jun-Hong;Kim, Sang-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.6
    • /
    • pp.786-791
    • /
    • 2007
  • Aerodynamically generated noise is dominant when the train speed approaches 300km/h. This noise sources is caused by the turbulent flow separations or vortex shedding from the train structure. Experiments were performed to investigate the characteristics of aerodynamic noise sources generated from exterior of the KTX trains and HSR-350x, especially from the inter-coach spacing. Measurements of both the inside and outside of the cabin are carried out to investigate the characteristics of the noise. Effect of the size of the mud-flap has been investigated through an wind tunnel test and it has been found that the low frequency noise is strongly dependent on the size of the gap. Also performed is an array measurement to locate different noise sources from the high-speed train. spectral characteristics of exterior noise sources are examined.

Effect of Reduced Frequency on the Flow Pattern of Pitch Oscillating Elliptic Airfoil (피치 진동하는 타원형 에어포일의 환산주파수가 날개 주위 유동패턴에 미치는 영향)

  • Lee, Ki-Young;Chung, Hyong-Seok;Sohn, Myong-Hwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.128-136
    • /
    • 2006
  • The purpose of this paper is to examine the dynamic stall characteristics of an elliptic airfoil when subject to constant pitch motions. In this study, which was motivated by the pressing need for a greater understanding of the reduced frequency$({\kappa})$ effects on flow patterns of elliptic airfoil, the various reduced frequencies were considered. The result confirms that the reduced frequency has a profound effects on the flow patterns. The increase of ${\kappa}$ accelerate the separation bubble bursting process up to ${\kappa}=0.10$, then diminish with further increase in ${\kappa}$. Compared with static condition, the dynamic pitching airfoil delays stall angle approximate $4{\circ}{\sim}5{\circ}$ during pitch-up stroke for ${\kappa}=0.10$. Results from this qualitative analysis provided valuable insight Into the control of dynamics stall.

Study on Multiple Shock Wave Structures in Supersonic Internal Flow (초음속 내부유동에서 다수의 충격파 구조에 대한 연구)

  • James, Jintu K;Kim, Heuy Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.3
    • /
    • pp.31-40
    • /
    • 2020
  • The structure and dynamics of multiple shock waves are studied numerically using a finite volume solver for a model with nozzle exit Mach number of 1.75. At first, the shock variation based on images were analyzed using a Matlab program then later to the wall static pressure variation. The amplitude and frequency variation for multiple shock waves are analyzed. The cross-correlation between the shock location suggests that the first and the second shocks are well correlated while the other shocks show a phase lag in the oscillation characteristics. The rms values of pressure fluctuations are maximum at the shock locations while the other parts in the flow exhibit a lower value os standard deviation.

Visualization of Vortex Flow around Coolant Outlets Using PIV and LDV (PIV와 LDV를 이용한 냉각수 토출구 주위의 와류 가시화 연구)

  • Hong, Ji-Woo;Shin, Su-Yong;Ahn, Byoung-Kwon
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.3
    • /
    • pp.136-142
    • /
    • 2021
  • Submerged and semi-submerged vehicles expel cooling water through an outlet. In this process, induced noise and vibration by the flow around the outlet have been reported, and it may cause problems directly related to survivability of the navy vessels. The coolant outlet has a net-type structure and circular columns are mostly used. In this study, flow measurements using PIV and LDV were performed for different type outlets; conventional (flat plate with round bar) and improved (flat and flat plate) configurations. Experiments were conducted at a cavitation tunnel where pressure and steady flow rate conditions are ensured for sufficient time to measure the flow. The average velocity field of the outlets were measured and compared through LDV measurements, and instantaneous vorticities were evaluated through PIV measurements. The results show that the improved type of the outlet is advantageous in terms of flow stability compared to the conventional type of the outlet.

Double Frequency Forcing of the Laminar Separated Flow over a Backward-Facing Step (층류박리 후향계단 유동의 이중주파수 가진)

  • Kim, Sung-Wook;Choi, Hae-Cheon;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1023-1032
    • /
    • 2003
  • The effect of local forcing on the separated flow over a backward-facing step is investigated through hot-wire measurements and flow visualization with multi-smoke wires. The boundary layer upstream of the separation point is laminar and the Reynolds number based on the free stream velocity and the step height is 13800. The local forcing is given from a slit located at the step edge and the forcing signal is always defined when the wind tunnel is in operation. In case of single frequency forcing, the streamwise velocity and the reattachment length are measured under forcing with various forcing frequencies. For the range of 0.010〈S $t_{\theta}$〈0.013, the forcing frequency component of the streamwise velocity fluctuation grows exponentially and is saturated at x/h = 0.75 , while its subharmonic component grows following the fundamental and is saturated at x/h = 2.0. However, the saturated value of the subharmonic is much lower than that of the fundamental. It is observed that the vortex formation is inhibited by the forcing at S $t_{\theta}$ = 0.019 . For double frequency forcing, natural instability frequency is adopted as a fundamental frequency and its subharmonic is superposed on it. The fundamental frequency component of the streamwise velocity grows exponentially and is saturated at 0.5 < x/h < 0.75, while its subharmonic component grows following the fundamental and is saturated at x/h= 1.5 . Furthermore, the saturated value of the subharmonic component is much higher than that for the single frequency forcing and is nearly the same or higher than that of the fundamental. It is observed that the subharmonic component does not grow for the narrow range of the initial phase difference. This means that there is a range of the initial phase difference where the vortex parring cannot be enhanced or amplified by double frequency forcing. In addition, this effect of the initial phase difference on the development of the shear layer and the distribution of the reattachment length shows a similar trend. From these observations, it can be inferred that the development of the shear layer and the reattachment length are closely related to the vortex paring.

The Comparison of Various Turbulence Models of the Flow around a Wall Mounted Square Cylinder (벽면에 부착된 사각 실린더 주변 유동에 대한 난류모델 비교연구)

  • Bae, Jun-Young;Song, Gi-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.4
    • /
    • pp.419-428
    • /
    • 2020
  • The flow past a wall mounted square cylinder, a typical and basic shape of building, bridge or offshore structure, was simulated using URANS computation through adoption of three turbulence models, namely, the k-ε model, k-ω model, and the v2-f model. It is well known that this flow is naturally unstable due to the Karman vortex shedding and exhibits a complex flow structure in the wake region. The mean flow field including velocity profiles and the dominant frequency of flow oscillation that was from the simulations discussed earlier were compared with the experimental data observed by Wang et al. (2004; 2006). Based on these comparisons it was found that the v2-f model is most accurate for the URANS simulation; moreover, the k-ω model is also acceptable. However, the k-ε model was found to be unsuitable in this case. Therefore, v2-f model is proved to be an excellent choice for the analysis of flow with massive separation. Therefore, it is expected to be used in future by studies aiming to control the flow separation.

Properties of TiN films prepared by using the DC sputtering and HIPIMS. (DC 스퍼터링과 HIPIMS로 제조한 TiN 박막의 특성 비교)

  • Byeon, In-Seop;Yang, Ji-Hun;Jeong, Jae-Hun;Kim, Seong-Hwan;Jeong, Jae-In
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.102-102
    • /
    • 2016
  • 본 연구에서는 직류 전원(direct current; DC)을 이용한 스퍼터링과 고전력펄스 마그네트론 스퍼터링(high-power impulse magentron sputtering; HIPIMS)의 두 가지 방법과 빗각 증착을 적용하여 제조한 티타늄 질화물(TiN) 박막의 미세구조 변화가 물성에 미치는 영향을 확인하였다. TiN 박막은 99.5%의 Ti 타겟을 사용하고, Ar가스와 $N_2$ 분위기에서 스테인리스(SUS304)와 초경(cdmented carbide; WC-10wt.%Co) 기판위에 코팅하였다. 기판은 알코올과 아세톤으로 초음파 세척을 실시한 후 진공용기에 장착하고 기본 진공도인 ${\sim}2.0{\times}10^{-5}Torr$ 까지 진공배기를 실시하였다. 기판과 타겟 간의 거리는 DC 스퍼터링은 10 cm, HIPIMS 스퍼터링은 8.5 cm 이었다. 진공용기의 압력이 기본 진공도까지 배기되면 Ar 가스를 ${\sim}10^{-2}Torr$로 주입한 후 기판에 라디오 주파수(radio frequency; RF) 전원으로 약 -800 V의 전압을 인가하여 글로우 방전을 발생시키고 약 30 분간 청정을 실시하였다. 기판의 청정이 끝난 후 기본 진공도까지 배기한 후 Ar와 $N_2$ 가스를 ${\sim}10^{-3}Torr$로 주입하여 TiN 코팅을 실시하였다. 빗각의 크기는 $45^{\circ}$$-45^{\circ}$이며, TiN 박막의 총 두께는 약 $2.5{\sim}4.0{\mu}m$ 로 유지하였다. 공정조건에 따라 TiN 박막의 주상정은 형태와 기울어진 각도가 다른 것을 확인하였다. DC 스퍼터링으로 제조된 TiN 박막은 기판홀더에 약 -100 V 의 bias 전압을 인가하면 인가하지 않은 박막에 비해 치밀한 박막의 성장과 경도 값도 증가하는 사실을 확인하였다. 또한 빗각을 적용하고 bias 전압을 인가하지 않은 시편에서 박리현상이 일어났다. HIPIMS로 제조한 TiN 박막은 bias 전압을 인가한 박막과 인가하지 않은 박막의 주상정 형상과 경도 값에 큰 차이가 없었으며, 박막의 박리현상은 모든 시편에서 일어나지 않았다. DC 스퍼터링으로 제조한 TiN 박막은 bias 전압을 인가하지 않으면 색상이 노란색이 아닌 갈색으로 나타났으며, HIPIMS으로 제조한 박막은 bias 전압 인가 유무에 상관없이 노란색 색상을 나타냈다. 앞서 설명한 DC 스퍼터링과 HIPIMS의 공정조건에 따라 나타난 박막의 경도, 색상, 물성변화 차이는 DC 스퍼터링보다 높은 HIPIMS의 이온화율에서 기인한 것으로 생각된다. 본 연구결과를 이용하면 다양한 형태의 박막 구조 제어가 가능하고 이러한 미세구조 제어를 통해서 박막의 물성도 제어가 가능할 것으로 판단된다.

  • PDF

Design of a 6bit 250MS/s CMOS A/D Converter using Input Voltage Range Detector (입력전압범위 감지회로를 이용한 6비트 250MS/s CMOS A/D 변환기 설계)

  • Kim, Won;Seon, Jong-Kug;Jung, Hak-Jin;Piao, Li-Min;Yoon, Kwang-Sub
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.5
    • /
    • pp.16-23
    • /
    • 2010
  • This paper presents 6bit 250MS/s flash A/D converter which can be applied to wireless communication system. To solve the problem of large power consumption in flash A/D converter, control algorithm by input signal level is used in comparator stage. Also, input voltage range detector circuit is used in reference resistor array to minimize the dynamic power consumption in the comparator. Compared with the conventional A/D converter, the proposed A/D converter shows 4.3% increase of power consumption in analog and a seventh power consumption in digital, which leads to a half of power consumption in total. The A/D converter is implemented in a $0.18{\mu}m$ CMOS 1-poly 6-metal technology. The measured results show 106mW power dissipation with 1.8V supply voltage. It shows 4.1bit ENOB at sampling frequency 250MHz and 30.27MHz input frequency.

Numerical Analysis of Sunroof Buffeting using STAR-CCM+ (STAR-CCM+를 이용한 썬루프 버페팅 유동 소음 해석)

  • Bonthu, Satish Kumar;Mendonca, Fred;Kim, Ghuiyeon;Back, Young-R.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.3
    • /
    • pp.213-218
    • /
    • 2014
  • CFD flow simulation of vehicles with open sunroof and passenger window help the automotive OEM(original equipment manufacturer) to identify the low frequency noise levels in the cabin. The lock-in and lock-off phenomena observed in the experimental studies of sunroof buffeting is well predicted by CFD speed sweep calculations over the operating speed range of the vehicle. The trend of the shear layer oscillation frequency with vehicle speed is also well predicted. The peak SPL from the CFD calculation has a good compromise with the experimental value after incorporating the real world effects into the CFD model by means of artificial compressibility and damping correction. The entire process right from modeling to flow analysis as well as acoustic analysis has been performed within the single environment i.e., STAR-CCM+.

Flow Control of Smart UAV Airfoil Using Synthetic Jet Part 2 : Flow control in Transition Mode Using Synthetic Jet (Synthetic jet을 이용한 스마트 무인기(SUAV) 유동제어 Part 2 : 천이 비행 모드에서 synthetic jet을 이용한 유동제어)

  • Kim, Min-Hee;Kim, Sang-Hoon;Kim, Woo-Re;Kim, Chong-Am;Kim, Yu-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.12
    • /
    • pp.1184-1191
    • /
    • 2009
  • In order to reduce the download around the Smart UAV(SUAV) at Transition mode, flow control using synthetic jet has been performed. Many of the complex tilt rotor flow features are captured including the leading and trailing edge separation, and the large region of separated flow beneath the wing. Based on the results of part 1 of the present work, synthetic jet is located at 0.01c, $0.95c_{flap}$ and it is operated with the non-dimensional frequency of 0.5, 5 to control the leading edge and trailing edge separation. Consequently, download is substantially reduced compared to with no control case at transition mode using leading edge jet only. The present results show that the overall flight performance and stability of the SUAV can be remarkably improved by applying the active flow control strategy based on synthetic jet.