• Title/Summary/Keyword: 바퀴로봇

Search Result 200, Processing Time 0.027 seconds

Odometry and Navigation of an Omni-directional Mobile Robot with Active Caster Wheels (구동 캐스터 바퀴를 이용한 전방향 모바일 로봇의 오도메트리와 내비게이션)

  • Jung, Eui-Jung;Yi, Byung-Ju
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.10
    • /
    • pp.1014-1020
    • /
    • 2009
  • This work deals with navigation of an omni-directional mobile robot with active caster wheels. Initially, the posture of the omni-directional mobile robot is calculated by using the odometry information. Next, the position accuracy of the mobile robot is measured through comparison of the odometry information and the external sensor measurement. Finally, for successful navigation of the mobile robot, a motion planning algorithm that employs kinematic redundancy resolution method is proposed. Through experiments for multiple obstacles and multiple moving obstacles, the feasibility of the proposed navigation algorithm was verified.

The Design of Azimuthal Angle Sensor for Position Compensation of Chaotic Robot (카오스 로봇의 자세 보정을 위한 방위각 센서 설계)

  • Bae Young-Chul;Kim Yi-Gon;Kim Cheon-Suk;Cho Eui-Joo;Koo Young-Duk
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.152-155
    • /
    • 2006
  • 카오스 로봇의 하드웨어 구현에서 로봇의 차제 또는 바퀴가 정확하기 자기 위치를 인식하고 지시한 방향과 거리만큼 이동하는 것이 가장 중요하다. 기존에 방위를 측정하기 위해서 주로 마그네틱 자이로센서를 사용하였으나 자이로센서는 주변의 자장의 영향을 크게 받아 정확한 방위를 측정하는 것이 곤란하다는 문제점이 있어 정확한 방향을 움직일 수 있는 각속도 센서로 대체하여 사용하는 방위각 센서 설계 방법을 제시하였다.

  • PDF

Vibration Control of a Single-wheel Robot Using a Filter Design (필터 설계를 통한 한 바퀴 구동 로봇의 진동 제어)

  • Lee, Sang-Deok;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.9
    • /
    • pp.863-868
    • /
    • 2015
  • In this paper, the vibration of a single-wheel mobile robot is minimized by designing a filter. An AHRS (Attitude and heading reference system) sensor is used for measuring the state of the robot. The measured signals are analyzed using the FFT method to investigate the fundamental vibrational frequency with respect to the flywheel's speed of the gimbal system. The IIR notch filter is then designed to suppress the vibration at the identified frequency. After simulating the performance of the designated filter using the measured sensor data through extensive experiments, the filter is actually implemented in a single-wheel mobile robot, GYROBO. Finally, the performance of the designed filter is confirmed by performing the balancing control task of the GYROBO system.

Balancing Control of a Unicycle Robot using Ducted Fans (덕티드 팬을 이용한 외바퀴 자전거로봇의 균형 제어)

  • Lee, Jong Hyun;Shin, Hye Jung;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.9
    • /
    • pp.895-899
    • /
    • 2014
  • This paper presents the balancing control of a unicycle robot using air power. Since the robot has one wheel to move forward and backward, the balancing control is quite challenging. To control the balancing angle, the accurate angle estimation by a tilt and a gyro sensor is required a priori. A complementary filter is implemented to eliminate the defects of two sensors and to fuse together to estimate an accurate balancing angle. The optimal design of air ducts is found empirically. Experimental studies of the balancing control of a unicycle robot confirm that the robot is well regulated without falling down.

Travel Control of a Spherical Wheeled Robot (Ball-Bot) with Mecanum Wheel (메카넘휠을 적용한 구형바퀴로봇(볼-봇)의 주행제어)

  • Seo, Beomseok;Park, Jong-Eun;Park, Jee-Seol;Lee, Jangmyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.7
    • /
    • pp.713-717
    • /
    • 2014
  • In this paper, the travel control of the spherical wheeled robot with a mecanum wheel is impelemented. Four typical wheels or three omni wheels are used to consist of the ball-bot. the slip is occured when the typical wheels is used to the ball-bot. In order to reduce these slip, the spherical wheeled robot with macanum wheels is proposed. Through some experiments, we find that the proposed spherical wheeled robot with a mecanum wheel is superior to the conventional spherical wheeled robot with typical wheels.

Development of SEROPI as a wheel-based humanoid robot (바퀴기반 휴머노이드 로봇 SEROPI 개발)

  • Choi, Moo-Sung;Shin, Eun-Cheol;Yang, Kwang-Woong;Kim, Hong-Seok
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.1
    • /
    • pp.73-80
    • /
    • 2008
  • Many researchers are studying on humanoid robots in all over the world. However the humanoid robots are still limited in doing works like picking up objects on the ground or moving rapidly. In this study, a humanoid robot based on the wheel-driving was developed. It can operate with a human working area keeping the stability. Also, the developed robot can take up the object on the floor since it has knee(1DoF) and waist(3DoF), and do service quickly and steadily. The hardware and software structure and algorithms of the developed robot, SEROPI are introduced in this paper.

  • PDF

Estimation of the Frictional Coefficient of Contact Point between the Terrain and the Wheel-Legged Robot with Hip Joint Actuation (고관절 구동 방식을 갖는 바퀴-다리형 로봇과 지면 간 접촉점에서의 마찰계수 추정)

  • Shin, Dong-Hwan;An, Jin-Ung;Moon, Jeon-Il
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.3
    • /
    • pp.284-291
    • /
    • 2011
  • This paper presents the estimation of the frictional coefficient of the wheel-legged robot with hip joint actuation producing maximum tractive force. Slip behavior for wheel-legged robot is analytically explored and physically understood by identification of the non-slip condition and derivation of the torque limits satisfying it. Utilizing results of the analysis of slip behavior, the frictional coefficients of the wheel-legged robot during stance phase are numerically estimated and finally this paper suggests the pseudo-algorithm which can not only estimate the frictional coefficients of the wheel-legged robot, but also produce the candidate of the touch down angle for the next stance.

A Study on Development of Multi-function Agricultural Mini Robot Equipped with Unmanned System (무인 시스템을 탑재한 다기능 농업 미니로봇의 개발에 관한 연구)

  • Kim, Ji-Hwan;Kim, Kang-Min;Jung, Ji-Wook;Park, Jin-Hyeok;Jung, Ju-Won
    • Annual Conference of KIPS
    • /
    • 2017.11a
    • /
    • pp.1304-1306
    • /
    • 2017
  • 지금의 농산업 기술발전에서 발생하는 사회적 갈등을 방지 할 수 있는 기술혁신의 일종으로 무인 시스템을 탑재한 미니로봇의 개발에 대해 연구한다. 해당 로봇은 모바일 5축 매니퓰레이터 형태를 기반으로 하여 험지에서 이동하기 위해 궤도바퀴를 이용하였고 웹 서버와 자율주행 기술로 일련의 무인 시스템을 구축하였다.

Isotropy Analysis of Caster Wheeled Mobile Robot with Variable Steering Link Offset (가변 조향링크 옵셋을 갖는 캐스터 바퀴 이동로봇의 등방성 분석)

  • Kim, Sung-Bok;Moon, Byung-Kwon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.12
    • /
    • pp.1235-1240
    • /
    • 2006
  • Previous isotropy analysis of a caster wheeled omnidirectional mobile robot(COMR) has been made under the assumption that the steering link offset is equal to the caster wheel radius. Nevertheless, many practical COMR's in use take advantage of the steering link offset different from the wheel radius, mainly because of improved stability. This paper presents the isotropy analysis of a fully actuated COMR with variable steering link offset, which can be considered as the generalization of the previous analysis. First, the kinematic model of a COMR under full actuation is obtained based on the orthogonal decomposition of the wheel velocities. Second, the necessary and sufficient conditions for the isotropy of a COMR are derived and examined to categorize three different groups, each of which can be dealt with in a similar way. Third, for each group, the isotropy conditions are further explored so as to identify all possible isotropic configurations completely.

Analysis of Relationship between Body and Gimbal Motion Through Experiment of a Single-wheel Robot Based on an Inverse Gyroscopic Effect (외바퀴 로봇의 역자이로 효과에 의한 바디 모션과 김벌 모션의 실험을 통한 관계 분석)

  • Lee, Sang-Deok;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.11
    • /
    • pp.1064-1069
    • /
    • 2015
  • Control Moment Gyro (CMG) has been used as an indirect actuator of a single-wheel robot system GYROBO, developed at Chungnam National University. The flip motion of the gimbal system produces the gyroscopic motion onto the body system while the body motion also produces the gyroscopic motion onto the gimbal system inversely. In this paper, the intuitive equation of the inverse gyroscopic effect is derived as the direct relation between the rate of the body system and the rate of the gimbal system. Experiments on the inverse gyroscopic effect under the chaotically generated disturbance are conducted. Experimental data are approximated by a linear equation using the least square method.