• Title/Summary/Keyword: 바인더 섬유

Search Result 38, Processing Time 0.027 seconds

Development of High-strength Polyethylene Terephthalate (PET) Sheet Through Low Melting Point Binder Compounding and Compression Process (저 융점 바인더 복합화 및 압착공정을 통한 고강도 폴리에틸렌 테레프탈레이트(PET) 시트 개발)

  • Moon, Jai Joung;Park, Ok-Kyung;Kim, Nam Hoon
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.282-287
    • /
    • 2020
  • In the present study, a high-strength polyethylene terephthalate (PET) sheet was fabricated through a densification process of low melting PET fiber (LMF) combined PET sheet. During the thermal heat treatment process of the combined LMF, individual PET fiber was connected, which in turn leads to the improvement of the interfacial bonding force between the fibers. Also, the densification of the PET sheet leads to reduce macrospore density and in return could enhance the binding force between the overlapped PET networks. Consequently, the asprepared LMF-PET sheet showed about 410% improved tensile strength and the same elongation compared to before compression. Besides, the enhanced bonding force can prevent the shrinkage of the PET fiber network and exhibited excellent dimensional stability.

Effects of laminated structure and fiber coating on tensile strength of radiation shielding sheet (방사선 차폐시트의 적층 구조와 섬유 코팅의 융합적인 현상이 인장강도에 미치는 영향)

  • Kim, Seon-Chil
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.6
    • /
    • pp.83-88
    • /
    • 2020
  • Recently, radiation shielding sheets made of eco-friendly materials have been widely used in medical institutions. The shielding sheet is processed into a solid form by thermoforming by mixing a shielding material with a polymer material. The base is resin-based and has a limit in tensile strength, and for this purpose, fibers such as non-woven fabrics are used on the surface. The shielding sheet process technology has a problem in that the tensile strength rapidly decreases when the content of the shielding material is increased to increase the shielding performance. In order to improve this, this study intends to compare and evaluate the method of laminating and coating the fibers in the sheet process. In comparison of the three types of sheets, there was no difference in shielding performance between the fiber-coated sheet and the compression sheet, but there was a large difference in tensile strength.

Design and Fabrication of Semi-cylindrical Radar Absorbing Structure using Fiber-reinforced Composites (섬유강화 복합재료를 이용한 반원통형 전자파 흡수구조의 설계 및 제작)

  • Jang, Hong-Kyu;Shin, Jae-Hwan;Kim, Chun-Gon;Shin, Sang-Hun;Kim, Jin-Bong
    • Composites Research
    • /
    • v.23 no.2
    • /
    • pp.17-23
    • /
    • 2010
  • The stealth technology can increase the survivability of aircrafts or warships and enhance the capability of mission completion in hostile territory. The purpose of this paper is to present the low observable structure with curved surfaces made by fiber-reinforced composites and to show the possibility of developing omnidirectional stealth platforms for military applications. In this study, we developed a radar absorbing structures(RAS) based on a circuit analog absorber to reduce the radar cross section(RCS) of an object with curved surfaces. Firstly, the RAS with a periodic square patterned conducting polymer layer was designed and simulated using a commercial 3-D electromagnetic field analysis program. Secondly, the designed semi-cylindrical structure with low RCS was fabricated using fiber-reinforced composites and conducting polymer. To make the periodic pattern layer, acts as resistive sheet, the intrinsic conducting polymer paste containing PEDOT with a polyurethane binder was used. Finally, the radar cross section was measured to evaluate the radar absorbing performances of the fabricated RAS by the compact range facility in POSTECH.

Characterization of Milled Carbon Fibers-filled Pitch-based Carbon Paper for Gas Diffusion Layer (미분쇄 탄소섬유가 첨가된 피치계 탄소섬유기반 기체확산층용 탄소종이 특성)

  • Ham, Eun-Kwang;Yoon, Dong-Ho;Kim, Byoung-Suhk;Seo, Min-Kang
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.262-268
    • /
    • 2016
  • In this work, the pitch-based carbon paper (P-CP) was prepared by re-impregnating of binder pitches and PAN-based milled carbon fibers (MCF) at low temperature carbonization process. The influence of MCF content on physicochemical properties of MCF/P-CP was investigated. As a result, the tensile strength of MCF/P-CP was increased sharply from 10 wt.% to 20 wt.% of MCF. Also, the increase of MCF content led to the decrease of interfacial contact resistivity and the improvement of electrical and thermal conductivity of MCF/P-CP. These results were probably due to the increase of density of MCF/P-CP, resulting in the formation of electrically and thermally conductive paths of the carbon paper.

Effects of Expansive Admixture on the Mechanical Properties of Strain-Hardening Cement Composite (SHCC) (팽창재 치환율에 따른 섬유보강 시멘트 복합체의 역학적 특성)

  • Lee, Young-Oh;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.617-624
    • /
    • 2010
  • This paper reports on a comprehensive study on the mechanical properties of expansive fiber-reinforced strainhardening cement composite (SHCC) materials containing various replacement levels (0, 8, 10, 12 and 14%) of an expansive admixture and 1.5% polyethylene (PE) fibers volume fraction. A number of experimental tests were conducted to investigate shrinkage, compressive strength, flexural strength, and direct tension behavior. Test results show that as expected, the different replacement levels of an expansive admixture have an important effect on the evolution of the free shrinkage of SHCC with a rich mixture. At the volume fraction of 1.5%, PE fibers in normal SHCC reduce free shrinkage deformation by about 30% in comparison to plain mortar. The replacement of an expansive admixture in SHCC material has led the SHCC to a better initial cracking behavior. Enhanced cracking tendency improved mechanical properties of SHCC materials with rich mixtures. Note that an increase in the replacement of expansive admixture from 10% to 14% does not lead to a significant improvement for mechanical properties; this implies that the replacement of 10% expansive admixture is sufficient.

Effect of Binder's Concentration and Fiber Type on Mechanical Properties of Fragrant Fabrics (마이크로캡슐을 이용한 방향가공시 바인더 농도 및 섬유 종류에 따른 물성)

  • 김혜림;송화순
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.7
    • /
    • pp.1029-1036
    • /
    • 2004
  • The fragrant fabrics were prepared by treatment with eucalyptus microcapsules. 100% cotton fabric, 100% polyester fabric and 100% wool fabric were used as test specimens. Using pad-dry-cure method, microcapsules were attached on each specimen by acrylic binder under conditions of varying concentration. Surface property, stiffness, and air permeability of fragrant fabrics were evaluated. As increasing concentration of binder, add-on yield was increased. Add-on yield was decreased with increasing laundering cycle, especially in polyester fabric. As the concentration of binder was increased, the properties of stiffness and air permeability were decreased. Also it fumed out that pad-dry-cure method was not suitable to polyester fabric.

Experimental Study of Exterior Panel Properties using Ultra High Performance Concrete (UHPC를 활용한 건축용 외장 패널 특성에 관한 실험적 연구)

  • Park, Oh-Seong;Cho, Hyeong-Kyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.3
    • /
    • pp.229-237
    • /
    • 2022
  • Ultra High Performance Concrete(UHPC) is a construction material that has a low water-binder ratio (W/B), a high-performance chemical admixture(SP), mixing material and steel fiber, and performance superior to that of regular concrete in terms of liquidity and strength. In the study, UHPC was used to prepare construction external panels that can replace existing stone panels. In addition, experiments were conducted to access the effects of differences in chemical admixture input amount, the number of fillers, antifoaming agent and steel fiber. An evaluation, was conducted, such of concrete compressive strength, flexural strength, impact strength, absorption rate, and frost resistance. The results showed compressive strength up to 115.5MPa, flexural strength of 20.3MPa, and an absorption rate of 1%. In this case, impact strength and frost resistance evaluation were satisfied with outward observed.

Performance Evaluation of Impermeable Asphalt Mixture using Cationized Silicate Fiber Modifier (양이온화 실리케이트 섬유 개질재(CSM)를 활용한 비배수성 아스팔트 혼합물의 성능 평가)

  • Young-Wook Kim;Sun-Gyu Tae;Young-Soo Kim;Diana Kim;Young-Il Jang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.59-65
    • /
    • 2024
  • In this study, in order to improve the mechanical properties and durability of asphalt mixtures, a modifier (CSM, Cationized Silicate Modifier) was applied to asphalt to derive optimal mixing ratio conditions. Design of asphalt mixture using modified asphalt binder was conducted, and moisture resistance and dynamic stability were evaluated for optimal mixing conditions. The evaluation results showed that it exceeded the standards stipulated in the relevant guidelines, and as a result of conducting a water permeability test on the optimal mixing condition, it was confirmed that impermeable performance was secured. As a result of examining the noise reduction performance through field test, a noise reduction performance of about 10 dB was secured compared to before paving. It will be necessary to secure reliability through continuous noise generation evaluation in the future.

Effect of the Kind and Content of Raw Materials on Mechanical Performances of Hybrid Composite Boards Composed of Green Tea, Charcoals and Wood Fiber (녹차-숯-목재섬유 복합보드의 역학적 성능에 미치는 구성원료의 종류 및 배합비율의 영향)

  • Park, Han-Min;Heo, Hwang-Sun;Sung, Eun-Jong;Nam, Kyeong-Hwan;Lim, Jae-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.64-76
    • /
    • 2013
  • In this study, eco-friendly hybrid composite boards were manufactured from green tea, three kinds of charcoals and wood fiber for developing interior materials to reinforce the strength performances and the functionalities in addition to performances of the green tea-wood fiber hybrid boards. The effects for the kind and the component ratio of raw materials on mechanical properties were investigated. Bending strength performances of hybrid composite boards were highest in the hybrid composite boards composed of green tea, fine charcoal and wood fiber on average. However, the difference caused by the kind of charcoals was not large. These values were was markedly improved than those of green tea - wood fiber hybrid composite boards reported in previous researches. And it was found that the bending strength performance decreased with increasing component ratios of green tea and charcoals. The difference between urea resins used as the binder showed the higher value in hybrid composite boards using $E_1$ grade urea resin than in those using $E_0$ grade urea resin, but the difference between hybrid composite boards manufactured by both resins decreased markedly than the green tea - wood fiber hybrid composite boards reported in previous research. The internal bond strength of hybrid composite boards was in the order of hybrid composite boards with fine charcoal, activated charcoal and black charcoal, and it was found that the hybrid composite boards with fine charcoal had a similar values to control boards composed of only wood fiber.

Synthesis and Characterization of Composite Paper Using Polyamide Fiber and Surface Modified Microfibrillated Cellulose (표면 개질된 마이크로피브릴화 셀룰로오스를 이용한 폴리아마이드 섬유와의 복합페이퍼 제조 및 특성평가)

  • Lee, Jong-Hee;Lim, Jung-Hyurk;Kim, Ki-Young;Kim, Kyung-Min
    • Polymer(Korea)
    • /
    • v.38 no.1
    • /
    • pp.74-79
    • /
    • 2014
  • Microfibrillated cellulose (MFC) was chemically modified with two different silane coupling agents (3-aminopropyltriethoxysilane and 3-mercaptopropyltriethoxysilane) and lauroyl chloride. The surface modification of MFC was confirmed by infrared spectroscopy (FTIR), energy dispersive X-ray spectroscopy (EDX), and contact angle measurements. Composite paper was successfully prepared with surface modified MFC and polyamide (PA) fiber. The surface modification of MFC not only prevented aggregation of MFC but also improved adhesive property between PA fiber and surface modified MFC. It was impossible to prepare papers of only PA fiber because there is no binder to connect PA fibers. That is, surface modified MFC as a binder in PA fiber played a crucial role in making composite paper. Composite paper with silane modified MFC showed higher tensile strength and modulus than composite paper with lauroyl moiety modified MFC. The structure, morphology, and mechanical properties of composite paper were analyzed by scanning electron microscope (SEM) and universal testing machine (UTM).