• Title/Summary/Keyword: 바이오-오일

Search Result 666, Processing Time 0.034 seconds

Effects of antibacterial mouth rinses on multiple oral biofilms model (구강세정제가 다중 구강 바이오필름 모델에 미치는 영향)

  • Soo-Kyung Jun;Young-Suk Choi
    • Journal of Korean society of Dental Hygiene
    • /
    • v.23 no.4
    • /
    • pp.209-218
    • /
    • 2023
  • Objectives: To confirm the antibacterial effects of each mouth rinse on multiple oral biofilms in vitro. Methods: The antibacterial effects of different mouth rinses were examined by ATP and counted colony forming units (CFU). Preformed oral biofilms on saliva coated hydroxyapatite (sHA) disks were treated with essential oil and saline; then, the multiple oral biofilms were observed by Scanning electron microscope (SEM). RNA sequencing analysis was performed on total RNA isolated from old biofilms of P. intermedia ATCC 49046. Results: In the CFU measured result compared to controls, preformed multiple oral biofilms were reduced from a low of 39.0% to 95.7% (p<0.05). The size of bacterial cells changed after treatment with the essential oil, and some of the cells ruptured into small pieces of cell debris. Gene expression in P. intermedia ATCC 49046 significantly altered in RNA transcribed and protein translated genes after exposure to essential oil. Conclusions: Mouth rinse solutions with different ingredients had different antibacterial effects and may alter surface structure and gene expression as determined by RNA sequencing.

Esterification for biodiesel production from dark oil (Dark oil로부터 바이오디젤 생산을 위한 에스테르화 반응 특성)

  • Park, Ji-Yeon;Kim, Deog-Keun;Na, Jong-Boon;Woo, Sang-Sun;Lee, Jin-Suk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.105.1-105.1
    • /
    • 2010
  • 바이오디젤 보급 활성화에 따른 식물성 원료유의 가격 상승 및 수급 불안정성 문제를 해결하고자 폐유지를 원료로 바이오디젤을 생산하고자 하는 시도가 이루어지고 있다. 폐유지의 사용은 폐자원 활용 측면에서 의미가 있으며 바이오디젤 생산 단가를 낮출 수 있다. 다양한 폐유지가 산업체로부터 배출되며 이 중에서 dark oil은 식용유 공장에서 식물성 원료유의 정제 과정에서 생기는 부산물로 바이오디젤로 전환 가능한 성분을 포함하고 있다. 본 연구에 사용된 dark oil은 54.9%의 유리지방산과 28.0%의 triglyceride, 4.4%의 diglyceride, 그리고 1% 이하의 monoglyceride를 함유하고 있다. Dark oil의 초기 산가는 109.8 mg KOH/g이었다. 본 연구에서는 dark oil의 유지 부분(triglyceride, diglyceride, monoglyceride)을 유리지방산으로 전환시켜 HAAO(high acid acid oil)을 생산한 후, 고체 산 촉매에 의한 에스테르화 반응을 통하여 바이오디젤을 생산하고자 하였다. 유지 부분의 유리지방산 전환 반응을 위하여 음이온성 계면활성제인 SDBS(sodium dodecyl benzene sulfonate)가 사용되었다. Dark oil:황산:물의 질량비가 10:2:10이고 SDBS가 오일 대비 3%인 조건에서 dark oil의 산가는 190.8 mg KOH/g까지 증가하였고, dark oil:황산:물의 질량비가 10:4:10이고 SDBS가 2%인 조건에서는 산가가 194.2 mg KOH/g까지 증가하였다. 생산된 HAAO을 이용하여 오일 대비 30%의 Amberlyst-15 촉매 하에서 HAAO:메탄올 몰비 1:9인 조건에서 에스테르화 반응을 수행하였을 경우 FAME(fatty acid methyl ester) 함량은 81.3%까지 증가하였다. 고체 산 촉매로써 Amberlyst-15와 가격 면에서 저렴한 PC101을 비교하였을 경우 FAME 함량은 각각 80.7%, 77.9%로 비슷한 효율을 나타내었다. 생산된 바이오디젤의 FAME 함량을 높이기 위해 증류 공정을 필요로 하였다.

  • PDF

Comparison of the chlorophyll content analysis methods of micro-algal oil (미세조류의 엽록소 분석법에 따른 함량 비교)

  • Choi, Byoungyun;Kim, Deogkeun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.113.1-113.1
    • /
    • 2011
  • 미세조류 내의 엽록소는 바이오디젤 전환 반응에서 산 촉매의 활성을 억제 할 뿐만 아니라, 짙은 색상을 띄게하여 바이오디젤 품질규격으로부터 벗어나게 한다. 미세조류의 엽록소 분석은 용매에 의해 엽록소를 추출한 후, 흡광도를 측정하여 그 함량을 계산하는 방법을 널리 사용하고 있다. 건조된 미세조류의 분석은 선택되는 용매에 따라 최대 추출량이 달라지는 것을 제외하고 큰 문제가 없지만 미세조류를 lipid 오일로 변환하면, 용매에 녹지 않아 추출이 되지않는 문제가 발생하여 흡광도 측정을 어렵게 한다. 따라서 미세조류의 형태가 powder일 때와 오일인 경우를 구분하여 용매를 선택해야 하며, 오일 또는 powder 형태 구분 없이 사용할 수 있는 분석법을 적용하여 서로 다른 엽록소 함량을 비교한 후 분석법 간의 상호 장단점을 파악해야한다. 본 연구에서는 메탄올을 용매로 사용하는 분석법(porra et al.)과 아세톤을 용매로 사용하는 분석법(Humphrey and Jeffrey)을 적용하여 엽록소 함량을 비교하였고, AAS(Atomic Absorption Spectrometer)를 통한 Mg 함량 측정을 통해 엽록소 함량을 계산하는 분석법간의 차이를 확인하였다.

  • PDF

Utilization and Quality Standard of Fast Pyrolysis Bio-Oil (급속 열분해 바이오 오일의 활용 및 품질기준)

  • PARK, JO YONG;DOE, JIN-WOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.2
    • /
    • pp.223-233
    • /
    • 2020
  • Fast pyrolysis is one of the most promising technologies for converting biomass to liquid fuels. Pyrolysis bio-oil can replace petroleum-based fuels used in various thermal conversion devices. However, pyrolysis bio-oil is completely different from petroleum fuels. Therefore, in order to successfully use pyrolysis bio-oil, it is necessary to understand the fuel characteristics of pyrolysis bio-oil. This paper focuses on fuel characteristics and upgrading methods of pyrolysis bio-oil and discusses how these fuel characteristics can be applied to the use of pyrolysis bio-oils. In addition, the fuel quality standards of fast pyrolysis bio-oil were examined.

Production of Biodiesel Using Immobilized Lipase from Proteus vulgaris (Proteus vulgaris에서 유래한 리파아제의 고정화 및 바이오디젤 생산)

  • Yoon, Shin-Ah;Han, Jin-Yee;Kim, Hyung-Kwoun
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.3
    • /
    • pp.238-244
    • /
    • 2011
  • Biodiesel, mono-alkyl esters of long chain fatty acids, is one of the alternative fuels derived from renewable lipid feedstock, such as vegetable oils or animal fats. For decade, various lipases have been used for the production of biodiesel. However, the production of biodiesel by enzymatic catalyst has profound restriction in industry application due to high cost. To overcome these problems, many research groups have studied extensively on the selection of cheap oil sources, the screening of suitable lipases, and development of lipase immobilization methods. In this study, we produced biodiesel from plant oil using Proteus vulgaris lipase K80 expressed in Escherichia coli cells. The recombinant lipase K80 was not only expressed in high level but also had high specific lipase activity and high stability in various organic solvents. Lipase K80 could produce biodiesel from olive oil by 3-stepwise methanol feeding method. The immobilized lipase K80 also produced biodiesel using the same 3-stepwise method. The immobilized lipase could produce biodiesel efficiently from various plant oils and waste oils.

Effect of Particle Size and Moisture Content of Woody Biomass on the Feature of Pyrolytic Products (급속열분해 공정에서 바이오매스의 입자크기와 수분 함량이 열분해 산물의 특성에 미치는 영향)

  • Hwang, Hyewon;Oh, Shinyoung;Kim, Jae-Young;Lee, Soomin;Cho, Taesu;Choi, Joon Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.445-453
    • /
    • 2012
  • In this study the effects of particle size and water content on the yields and physical/chemical properties of pyrolytic products were investigated through fast-pyrolysis of yellow poplar. Water content was critical parameters influencing the properties of bio-oil. The yields of bio-oil were increased with decreasing water content. However, the yield of pyrolytic product was not clearly influenced by feedstock's particle size. The water content, pH and HHV (Higher Heating Value) of bio-oil were measured to 20~30%, 2.2~2.4 and 16.6~18.5MJ/kg, respectively. The water content of feedstock was clearly influenced to water content of bio-oil. In terms of bio-char, HHV of them were measured to 26.2~30.1 MJ/kg with high content of carbon over 80%.

Hydrogen Production by Steam Reforming of Aqueous Bio-Oil from Marine Algae (수소생산을 위한 해조류 유래 수용액 상 바이오오일의 수증기 개질 반응)

  • Park, Yong Beom;Lim, Hankwon;Woo, Hee-Chul
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.94-100
    • /
    • 2016
  • Hydrogen production via steam reforming of bio-oil from algal biomass over fast pyrolysis with commercial catalysts was carried out. Aqueous bio-oil obtained by phase separation from a crude oil over fast pyrolysis was used as a reactant and comparison studies for activity over different catalysts (FCR-4-02, POS-7, Cat. A, RUA), reaction temperature, and steam/carbon (S/C) ratios were performed. Experimental results showed that different catalytic activities were observed with different S/C ratios and catalyst composition and the highest hydrogen yield of 70% was obtained with a POS-7 catalyst at a S/C ratio of 10 and 1073 K.

Esterification of Indonesia Tropical Crop Oil by Amberlyst-15 and Property Analysis of Biodiesel (인도네시아 열대작물 오일의 Amberlyst-15 촉매 에스테르화 반응 및 바이오디젤 물성 분석)

  • Lee, Kyoung-Ho;Lim, Riky;Lee, Joon-Pyo;Lee, Jin-Suk;Kim, Deog-Keun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.324-332
    • /
    • 2019
  • Most countries including Korea and Indonesia have strong policy for implementing biofuels like biodiesel. Shortage of the oil feedstock is the main barrier for increasing the supply of biodiesel fuel. In this study, in order to improve the stability of feedstock supply and lower the biodiesel production cost, the feasibility of biodiesel production using two types of Indonesian tropical crop oils, pressed at different harvesting times, were investigated. R. Trisperma oils, a high productive non-edible feedstocks, were investigated to produce biodiesel by esterification and transesterification because of it's high impurity and free fatty acid contents. the kindly provided oils from Indonesia were required to perform the filtering and water removal process to increase the efficiency of the esterificaton and transesterification reactions. The esterification used heterogeneous acid catalyst, Amberlyst-15. Before the reaction, the acid value of two types oil were 41, 17 mg KOH/g respectively. After the pre-esterification reaction, the acid value of oils were 3.7, 1.8 mg KOH/g respectively, the conversions were about 90%. Free fatty acid content was reduced to below 2%. Afterwards, the transesterification was performed using KOH as the base catalyst for transesterification. The prepared biodiesel showed about 93% of FAME content, and the total glycerol content was 0.43%. It did not meet the quality specification(FAME 96.5% and Total glycerol 0.24%) since the tested oils were identified to have a uncommon fatty acid, generally not found in vegetable oils, ${\alpha}$-eleostearic acid with much contents of 10.7~33.4%. So, it is required to perform the further research on reaction optimization and product purification to meet the fuel quality standards. So if the biodiesel production technology using un-utilized non-edible feedstock oils is successfully developed, stable supply of the feedstock for biodiesel production may be possible in the future.

Numerical Study on the Evaporation Characteristics of Biocrude-oil Produced by Fast Pyrolysis (급속열분해를 통하여 생산된 바이오오일 액적의 증발 특성에 관한 수치해석적 연구)

  • Choi, Sang Kyu;Choi, Yeon Seok;Kim, Seock Joon;Han, So Young
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.646-652
    • /
    • 2016
  • Biomass is regarded as one of the promising energy sources to deal with the depletion of fossil fuels and the global warming issue. Biocrude-oil can be produced through the fast pyrolysis of biomass feedstocks such as wood, crops, agricultural and forestry residues. It has significantly higher viscosity than that of conventional petroleum fuel and contains solid residues, which can lower the spray and atomization characteristics when applied to the burner. In addition, biocrude-oil consists of hundreds of chemical species derived from cellulose, hemicellulose and lignin, and evaporation characteristics of the biocrude-oil droplet are distinct from the conventional fuels. In the present study, a numerical study was performed to investigate the evaporation characteristics of biocrude-oil droplet using a simplified composition of the model biocrude-oil which consists of acetic acid, levoglucosan, phenol, and water. The evaporation characteristics of droplets were compared at various surrounding air temperatures, initial droplet diameters, and ethanol mixing ratios. The evaporation time becomes shorter with increasing air temperature, and it is much sensitive to the air temperature particularly in low temperature ranges. It was also found that the biocrude-oil droplet evaporates faster in cases of the smaller initial droplet diameter and larger ethanol mixing ratio.

Preparation of Coffee Grounds Activated Carbon-based Supercapacitors with Enhanced Properties by Oil Extraction and Their Electrochemical Properties (오일 추출에 의해 물성이 향상된 커피 찌꺼기 활성탄소기반 슈퍼커패시터 제조 및 그 전기화학적 특성)

  • Kyung Soo Kim;Chung Gi Min;Young-Seak Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.426-433
    • /
    • 2023
  • Capacitor performance was considered using coffee grounds-based activated carbon produced through oil extraction and KOH activation to increase the utilization of boiwaste. Oil extraction from coffee grounds was performed by solvent extraction using n-Hexane and isopropyl alcohol solvents. The AC_CG-Hexane/IPA produced by KOH activation after oil extraction increased the specific surface area by up to 16% and the average pore size by up to 2.54 nm compared to AC_CG produced only by KOH activation without oil extraction. In addition, the pyrrolic/pyridinic N functional group of the prepared activated carbon increased with the extraction of oil from coffee grounds. In the cyclic voltage-current method measurement experiment, the specific capacitance of AC_CG-Hexane/IPA at a voltage scanning speed of 10 mV/s is 133 F/g, which is 33% improved compared to the amorphous capacity of AC_CG (100 F/g). The results show improved electrochemical properties by improving the size and specific surface area of the mesopores of activated carbon by removing components from coffee grounds oil and synergistic effects by increasing electrical conductivity with pyrrolic/pyridinic N functional groups. In this study, the recycling method and application of coffee grounds, a bio-waste, is presented, and it is considered to be one of the efficient methods that can be utilized as an electrode material for high-performance supercapacitors.