• Title/Summary/Keyword: 바이오헬스

Search Result 147, Processing Time 0.024 seconds

Wearable based Electrocardiogram Sensing Clothes for Monitoring of Vital Signal (생체신호 측정을 위한 웨어러블 기반의 심전도 측정 의복)

  • Yu, Ki-Youp;Han, Ki-Tae;Kim, Ju-Hyun;Kim, Jong-Hun;Chung, Kyung-Yong;Lee, Jung-Hyun
    • Annual Conference of KIPS
    • /
    • 2009.11a
    • /
    • pp.277-278
    • /
    • 2009
  • 차세대 하이테크 스마트 의류는 복합 차원에서의 감성적인 요소를 섬유 패션기술에 IT융합 기술을 이용하여 제공하고 있다. 생체신호를 이용한 감성은 모호하여 정량적이고 객관적인 측정이 어렵고, 그 표현도 제한된 감성 어휘에 의하여 나타나기 때문에 구체적으로 파악하는 것은 어려운 일이다. 이를 위하여 제품의 기능적 측면뿐만 아니라 정서적 감정과 선호도가 반영된 제품의 설계나 디자인 또한 요구되고 있다. 본 논문에서는 생체신호 측정을 위한 웨어러블 기반의 심전도 측정 의복을 제안하였다. 착용자가 평소 자주 입는 티셔츠를 응용하여 답답해하거나 불편하지 않게 제작하고 소매 형태로 신축성있는 소재를 사용한다. 인체의 형태에 따라 의복과 바이오센서의 전극이 안정적으로 밀착될 수 있도록 고탄력 밴드를 이용하여 일자형으로 제작하였다. 심전도 측정 의복을 착용에 의해 수집된 심전도 ECG 파형을 수집하고 심박변화율을 계산하는 시뮬레이션을 개발한다.

Recent Research Trend in Multifunctional Flexible Neural Interfaces (다기능 유연성 신경 인터페이스 연구동향)

  • Park, Seongjun
    • Prospectives of Industrial Chemistry
    • /
    • v.22 no.6
    • /
    • pp.26-40
    • /
    • 2019
  • 고령화 사회에 접어들면서 신경, 정신질환으로 인한 사회경제적 부담이 늘어나고 있다. 이를 해결하기 위해서는 관련된 신경 회로를 직접적으로 자극하거나 그곳에서 일어나는 일을 실시간으로 감지할 수 있는 장비의 개발이 필수적이다. 하지만 이를 위한 수많은 공학적 도구의 개발에도 불구하고, 뛰어난 공간적/시간적 분해능, 세포형의 선택성, 장시간 안정성을 보유한 신경 인터페이스의 개발은 아직까지도 연구가 필요한 분야이다. 특히 신경전달 원리를 모두 이용하고자 하는 다기능 인터페이스의 개발은 최근 많은 연구자들의 관심 주제이고, 유연성을 가지는 인터페이스 개발 또한 안정성뿐만 아니라 신경 신호의 수명을 좌우하는 중요한 요소이기에 그 중요성을 인정받고 있다. 이를 해결하기 위한 여러 가지 과학적 시도 중에서도, 열 인장 공정으로 제작되는 섬유 형태의 장비는 그 통합적 기능을 수행하는 한 가지 방법으로써 많은 관심을 받고 있다. 이 기술은 다양한 기하학적 구조, 기능적 요소 등을 통합하는데 매우 유리하며, 또한 기존 반도체 공정으로 다루기 어려운 유연성 물질로 마이크로 스케일의 인터페이스를 제작하는 데에 매우 효과적이다. 본 기고문에서는 먼저 현재까지 개발되고 있는 다기능 유연 신경 인터페이스의 연구동향을 소개하고, 특히 그 중에서도 최근에 주목받고 있는 광섬유 기반의 인터페이스 개발에 대해 이야기하고자 한다.

Stand-alone Real-time Healthcare Monitoring Driven by Integration of Both Triboelectric and Electro-magnetic Effects (실시간 헬스케어 모니터링의 독립 구동을 위한 접촉대전 발전과 전자기 발전 원리의 융합)

  • Cho, Sumin;Joung, Yoonsu;Kim, Hyeonsu;Park, Minseok;Lee, Donghan;Kam, Dongik;Jang, Sunmin;Ra, Yoonsang;Cha, Kyoung Je;Kim, Hyung Woo;Seo, Kyoung Duck;Choi, Dongwhi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.86-92
    • /
    • 2022
  • Recently, the bio-healthcare market is enlarging worldwide due to various reasons such as the COVID-19 pandemic. Among them, biometric measurement and analysis technology are expected to bring about future technological innovation and socio-economic ripple effect. Existing systems require a large-capacity battery to drive signal processing, wireless transmission part, and an operating system in the process. However, due to the limitation of the battery capacity, it causes a spatio-temporal limitation on the use of the device. This limitation can act as a cause for the disconnection of data required for the user's health care monitoring, so it is one of the major obstacles of the health care device. In this study, we report the concept of a standalone healthcare monitoring module, which is based on both triboelectric effects and electromagnetic effects, by converting biomechanical energy into suitable electric energy. The proposed system can be operated independently without an external power source. In particular, the wireless foot pressure measurement monitoring system, which is rationally designed triboelectric sensor (TES), can recognize the user's walking habits through foot pressure measurement. By applying the triboelectric effects to the contact-separation behavior that occurs during walking, an effective foot pressure sensor was made, the performance of the sensor was verified through an electrical output signal according to the pressure, and its dynamic behavior is measured through a signal processing circuit using a capacitor. In addition, the biomechanical energy dissipated during walking is harvested as electrical energy by using the electromagnetic induction effect to be used as a power source for wireless transmission and signal processing. Therefore, the proposed system has a great potential to reduce the inconvenience of charging caused by limited battery capacity and to overcome the problem of data disconnection.

Development of Multidimensional Analysis System for Bio-pathways (바이오 패스웨이 다차원 분석 시스템 개발)

  • Seo, Dongmin;Choi, Yunsoo;Jeon, Sun-Hee;Lee, Min-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.11
    • /
    • pp.467-475
    • /
    • 2014
  • With the development of genomics, wearable device and IT/NT, a vast amount of bio-medical data are generated recently. Also, healthcare industries based on big-data are booming and big-data technology based on bio-medical data is rising rapidly as a core technology for improving the national health and aged society. A pathway is the biological deep knowledge that represents the relations of dynamics and interaction among proteins, genes and cells by a network. A pathway is wildly being used as an important part of a bio-medical big-data analysis. However, a pathway analysis requires a lot of time and effort because a pathway is very diverse and high volume. Also, multidimensional analysis systems for various pathways are nonexistent even now. In this paper, we proposed a pathway analysis system that collects user interest pathways from KEGG pathway database that supports the most widely used pathways, constructs a network based on a hierarchy structure of pathways and analyzes the relations of dynamics and interaction among pathways by clustering and selecting core pathways from the network. Finally, to verify the superiority of our pathway analysis system, we evaluate the performance of our system in various experiments.

Influencing Factors and Interactions among the Skin Microbiomes in Affecting Detrimental Bacteria (피부 마이크로바이옴의 요인과 상호작용이 유해균에 미치는 영향에 대한 연구)

  • Lim, Hye-Sung;Lim, Young-Seok;Jo, Changik
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.48 no.3
    • /
    • pp.197-212
    • /
    • 2022
  • This study was conducted to empirically analyze the effects and interactions among beneficial bacteria, commensal bacteria, and acne bacteria, which are factors in the skin microbiomes, on detrimental bacteria by 289 people, who are 20 to 49 years old among Koreans. As a result of multiple regression models using bio big data of skin microbiomes, when the difference in skin microbiomes according to the sex and age of the subjects was controlled, the beneficial bacteria showed a negative (-) effect on the detrimental bacteria, while the commensal and acne bacteria showed a positive (+) effect. Particularly, the negative (-) effect of beneficial bacteria on detrimental bacteria was different through interaction with acne bacteria according to the level of commensal bacteria. These results demonstrate that the activation of beneficial bacteria inhibits detrimental bacteria, and the effect of skin microbiomes on detrimental bacteria is balanced with skin microbiomes through interaction with independent influence. Therefore, it is suggested that when studying skin microbiomes products to help the proliferation of beneficial bacteria and to create a skin environment that inhibits detrimental bacteria in the personalized cosmetics manufacturing industry, it is necessary to consider the independent effects and interactions among skin microbiome factors together.

Effect of the Configuration of Contact Type Textile Electrode on the Performance of Heart Activity Signal Acquisition for Smart Healthcare (스마트 헬스케어를 위한 심장활동 신호 검출용 접촉식 직물전극의 구조가 센싱 성능에 미치는 영향)

  • Cho, Hyun-Seung;Koo, Hye-Ran;Yang, Jin-Hee;Lee, Kang-Hwi;Kim, Sang-Min;Lee, Jeong-Hwan;Kwak, Hwy-Kuen;Ko, Yun-Su;Oh, Yun-Jung;Park, Su-Youn;Kim, Sin-Hye;Lee, Joo-Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.21 no.4
    • /
    • pp.63-76
    • /
    • 2018
  • The purpose of this study was to investigate the effect of contact type textile electrode structure on heart activity signal acquisition for smart healthcare. In this study, we devised six contact type textile electrodes whose electrode size and configuration were manipulated for measuring heart activity signals using computerized embroidery. We detected heart activity signals using a modified lead II and by attaching each textile electrode to the chest band in four healthy male subjects in a standing static posture. We measured the signals four times repeatedly for all types of electrodes. The heart activity signals were sampled at 1 kHz using a BIOPAC ECG100, and the detected original signals were filtered through a band-pass filter. To compare the performance of heart activity signal acquisition among the different structures of the textile electrodes, we conducted a qualitative analysis using signal waveform and size as parameters. In addition, we performed a quantitative analysis by calculating signal power ratio (SPR) of the heart activity signals obtained through each electrode. We analyzed differences in the performance of heart activity signal acquisition of the six electrodes by performing difference and post-hoc tests using nonparametric statistic methods on the calculated SPR. The results showed a significant difference both in terms of qualitative and quantitative aspects of heart activity signals among the tested contact type textile electrodes. Regarding the configurations of the contact type textile electrodes, the three-dimensionally inflated electrode (3DIE) was found to obtain better quality signals than the flat electrode. However, regarding the electrode size, no significant difference was found in performance of heart signal acquisition for the three electrode sizes. These results suggest that the configuration method (flat/3DIE), which is one of the two requirements of a contact type textile electrode structure for heart activity signal acquisition, has a critical effect on the performance of heart activity signal acquisition for wearable healthcare. Based on the results of this study, we plan to develop a smart clothing technology that can monitor high-quality heart activity without time and space constraints by implementing a clothing platform integrated with the textile electrode and developing a performance improvement plan.

Anti-diabetic Activity of Polysaccharide from Salicornia herbacea (함초 다당체의 항당뇨 활성)

  • Kim, Seon-Hee;Ryu, Deok-Seon;Lee, Mi-Young;Kim, Ki-Hoon;Kim, Yong-Ho;Lee, Dong-Seok
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.1
    • /
    • pp.43-48
    • /
    • 2008
  • The present study investigated the effect of physiologically active polysaccharide (SP1) isolated from Salicornia herbacea on streptozotocin-induced diabetic rats. Male Spraque-Dawley rats were divided into four groups which were normal control group (NC), diabetic control group (DC), diabetic CSP group (DCSP), and diabetic SP1 group (DSP1). Animals were administrated with 2% experimental drinks for 6 weeks. The levels of glucose, triglyceride, total cholesterol, and high density lipoprotein (HDL)-cholesterol in the serum were measured before and after intake of test compounds. The levels of glucose and triglyceride in the DSP1 were significantly lower than those in the DC by 25% and 20%, respectively. The levels of total cholesterol and high density lipoprotein (HDL)-cholesterol in the DSP1 were similar to those in the DC. These results suggest that SP1 substantially exhibit anti-hyperglycemic and anti-hypertriglyceridemic activity in diabetic rats. Therefore SP1 is believed to show remarkable anti-diabetic effect on streptozotocin-induced diabetic rats.

Optimization of Combined Process of Enzymatic Hydrolysis and Solvent Extraction for Production of Lycopene from Elaeagnus umbellata (보리수 나무 열매로부터 라이코펜 생산을 위한 효소 분해 및 유기용매 추출 복합 공정의 최적화)

  • Oh, Yun Hye;Lee, Ju Mi;Chae, Hee Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.293-299
    • /
    • 2020
  • This study was undertaken to optimize combining the processes of enzymatic hydrolysis and extraction for lycopene production from autumn olive berry. The autumn olive berry was pulverized and suspended in water, followed by treatment with various hydrolytic enzymes including Ceremix, Celluclast, AMG, Viscozyme, Pectinex, Promozyme, Ultraflo and Tunicase. Reaction solutions were subjected to extraction by applying different organic solvents including acetone, ethyl acetate, hexane and chloroform. Highest yields of lycopene extraction were obtained with the Ceremix (hydrolysis enzyme) and chloroform (extraction solvent) combination. Subsequently, using this ideal combination, enzymatic hydrolysis conditions, including enzyme concentration, pH and temperature, were statistically optimized to 0.58%, 5.5 and 54.4℃, respectively, by applying the response surface method. The lycopene extraction yield increased 2.3-fold (22.6 mg/100g) by using the selected combined process. We propose that these results could be used for the future development of bioactive materials required for bio-health care products.

Development of a Real-Time Control & Management System with In-Vitro Diagnostic Medical Device for Dengue Fever (실시간 뎅기열 관리를 위한 관제시스템 개발)

  • Changsun, Ahn;Yongho, Park;Jungdae, Moon;Jongchan, Park;Youngkon, Seo;Allen, Sohn;Yoonjong, Choi;Yanghwa, Ha;Bongsu, Jung;Youngjoo, Kim
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.2
    • /
    • pp.77-84
    • /
    • 2023
  • Dengue virus transmission is a viral infection disease between humans and Aedes mosquitoes. Dengue is ubiquitous throughout the tropics and subtropical zones, where 1/3 of the global population live. The weather in Korea is also changing to subtropical weather, resulting in increased vulnerable Korean population to dengue virus transmission. It is important to control and prevent the dengue risk with track-recording & monitoring system. It is also required to have the control system to treat and monitor dengue patients with various cases such as regions, ages, genders according to the track-record of the disease. In this paper, we developed a Dengue Control & Prevention System, which can monitor and control dengue outbreaks in real-time with in-vitro diagnostic devices. Dengue Control & Prevention System is composed of in-vitro diagnostic device, which is a fluorescent immunoassay, and real-time monitoring system. In the future, we expect that our Dengue Control & Prevention System can be upgraded to have various disease information from Korea Disease Control and Prevention Agency for government policies and diseases control in Korea.

Performance and Characterization of Ceramic Membrane by Phase Inversion-Extrusion Process with Polymer Binder Mixing (상전이-압출 알루미나 분리막 제조 공정에서 혼합 고분자 바인더 적용에 따른 성능 및 특성 평가)

  • Sojin Min;Ahrumi Park;Yongsung Kwon;Daehun Kim;You-In Park;Seong-Joong Kim;Seung-Eun Nam
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.439-446
    • /
    • 2023
  • Ceramic membranes are generally used for various industrial processes operating under extreme conditions because of its high thermal and chemical stability. However, due to the trade-off phenomenon of permeability and mechanical strength, preparation of high permeability-high strength membrane is necessary. In this study, the change in characteristics and performances of ceramic membranes was analyzed depending on the type of polymer binder and its mixing ratio. Because the solubility between solvent and polymer binder was higher in PSf (polysulfone) than in PES (polyethersulfone), the viscosity and discharge pressure of the PSf-based dope solution were higher than those of PES-based dope solution. When PSf was used as a polymer binder, ceramic membrane showed high mechanical strength and low water permeability due to the dense structure. On the other hand, in case of PES, the mechanical strength was slightly reduced and the water permeability was increased. It was confirmed that the optimum mixing ratio of the PSf and PES with high water permeability and mechanical strength was 9:1.