• Title/Summary/Keyword: 바이오연료

Search Result 682, Processing Time 0.024 seconds

Study of Pore Development Model in Low Rank Solid Fuel Using FERPM (FERPM을 적용한 저등급 고체연료의 기공발달 모델 특성 연구)

  • PARK, KYUNG-WON;KIM, GYEONG-MIN;JEON, CHUNG-HWAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.2
    • /
    • pp.178-187
    • /
    • 2019
  • Due to the increasing demand of high rank coal, the use of low rank coal, which has economically advantage, is rising in various industries using carbonaceous solid fuels. In addition, the severe disaster of global warming caused by greenhouse gas emissions is becoming more serious. The Republic of Korea set a goal to reduce greenhouse gas emissions by supporting the use of biomass from the Paris International Climate Change Conference and the 8th Basic Plan for Electricity Supply and Demand. In line with these worldwide trends, this paper focuses on investigating the combustibility of high rank coal Carboone, low rank coal Adaro from Indonesia, Baganuur from Mongolia and, In biomass, wood pellet and herbaceous type Kenaf were simulated as kinetic reactivity model. The accuracy of the pore development model were compared with experimental result and analyzed using carbon conversion and tau with grain model, random pore model, and flexibility-enhanced random pore model. In row lank coal and biomass, FERPM is well-matched kinetic model than GM and RPM to using numerical simulations.

Zeolite Based Pervaporation Membrane: A Review (제올라이트 기반 투과증발 분리막: 총설)

  • JooYeop, Lee;Rajkumar, Patel
    • Membrane Journal
    • /
    • v.32 no.6
    • /
    • pp.383-389
    • /
    • 2022
  • Membrane separation process is an important technique utilized for various applications. This separation process proceeds due to a driving force such as concentration gradient, pressure or electrical potential gradient etc. Pervaporation is one of the separation process based on solution-diffusion mechanism. The pressure of the permeate side is reduced by creating vacuum and separation is driven due to pressure difference. Purity of the fuel or chemical like ethanol or isopropyl alcohol are improved by dehydration process through porous zeolite membrane. These membranes have high thermal, chemical, mechanical stability. This review is classified mainly into two different sections: Ethanol and bio-oil dehydration by zeolite membrane.

Development of Land Fill Gas(LFG)-MGT Power Generation and Green House Design Technology (쓰레기 매립지 MGT 발전 및 유리온실 설계기술개발)

  • Hur, Kwang-Beom;Park, Jung-Keuk;Lee, Jung-Bin
    • Journal of Energy Engineering
    • /
    • v.20 no.1
    • /
    • pp.13-20
    • /
    • 2011
  • The high fuel flexibility of Micro Gas Turbine(MGT) has boosted their use in a wide variety of applications. Recently, the demand for biogas generated from the digestion of organic wastes and landfill as a fuel for gas turbines has increased. We researched the influence of firing landfill gas(LFG) on the performance and operating characteristics of a micro gas turbine combined heat and power system. $CH_4$ and $CO_2$ simultaneous recovery process has been developed for field plant scale to provide an isothermal, low operating cost method for carrying out the contaminants removal in Land Fill Gas(LFG) by liquid phase catalyst for introduce into the green house for the purpose of $CO_2$ rich cultivation of the plants. Methane purification and carbon dioxide stripping by muti panel autocirculation bubble lift column reactor utilizing Fe-EDTA was conducted for evaluate optimum conditions for land fill gas. Based on inflow rate of LFG as 0.207 $m^3$/min, 5.5 kg/$cm^2$, we designed reactor system for 70% $CH_4$ and 27% $CO_2$ gas introduce into MGT system with $H_2S$ 99% removal efficiency. A green house designed for four different carbon dioxide concentration from ambient air to 1500 ppm by utilizing the exhaust gas and hot water from MGT system.

Study on Crude Oil Productions and its practice with Rice hull As Treated in Various Supercritical Solvents on Application of Liquefaction Technology (Liquefaction technology 적용 시 왕겨를 이용한 Crude oil 생산 및 적용 연구)

  • Shin, JoungDu;Baek, Yi;Hong, Seung-Gil;Kwon, Soon-Ik;Park, Woo-Kyun;Park, SangWon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.1
    • /
    • pp.110-118
    • /
    • 2010
  • Supercritical treatment of liquefaction technology for rice hull was investigated the biomass conversion rate and evaluated its crude oil in respect to feasibility of burner in order to heat the green house. The reaction was carried out in a 5,000 mL liquefaction system with dispenser and external electrical furnace. Raw materials (160 g) of rice hull and 3,000 mL of different solvents were fed into the reactor. It was observed that the maximum crude oil yield was about 84.4 % with 1-butanol. The calorific value of crude oil from ethanol solvent were 7,752 kcal/kg. Furthermore, in case study of co-solvent with ethanol and bulk-glycerol, it observed that more than 80 % of rice hull was decomposed and liquefied in its solvent at $315{\sim}326^{\circ}C$ for 30 min. For the development of applicable bio-fuel from rice hull, it was considered that its feasibility is necessary to be carried out for co-solvent soluble portions. Regarding to utilize the crude oil into burner as fuel, it was observed that its calorific value was lower at approximately 24 % than the diesel. Also, flame length from crude oil at lower temperature was decreasing due to incomplete incineration. The temperature of warm wind on the burner was maintained between 63 and $65^{\circ}C$, and the temperature of emission line was appeared at $350{\sim}380^{\circ}C$.

Recent Development of Thermo-chemical Conversion Processes with Fluidized Bed Technologies (유동층 공정을 이용한 열화학적 전환 공정의 최신 개발 동향)

  • Hyun Jun Park;Seung Seok Oh;Olusola Nafiu Olanrewaju;Jester Lih Jie Ling;Chul Seung Jeong;Han Saem Park;See Hoon Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.8-18
    • /
    • 2023
  • Increasing of energy demand due to the rapid growth of global population and the development of world economy has inevitably resulted in the continuously increase of fossil fuel usage in the world. However, highly dependence on fossil fuels has necessarily brought about critical environmental issues and challenges such as severe air pollutions and rapid global warming. In order to settle these environmental and energy problems, clean energy generations in the conventional combustion processes have widely adapted in the world. In particular, novel thermochemical conversion processes such as pyrolysis and gasification have rapidly been applied for generating clean energy. Fluidized bed technologies having advantages such as various fuel use, easy continuous operation, high heat and material transfer, isothermal operation, and lower operation temperature are widely adopted and used because they are suitable for thermochemical energy conversion. The latest research trends and important findings in the thermo-chemical conversion process with fluidized bed technologies are summarized in this review. Also, the need for research such as layered materials and substances to reduce fine dust (biomass, natural resource waste, etc.) was suggested. Through this, it is intended to increase interest and understanding in fluidized bed technology and to present directions for solving future challenges in fluidized bed process technology development.

Effects of Biomass Gasification by Addition of Steam and Calcined Dolomite in Bubbling Fluidized Beds (기포유동층에서 수증기 및 소성된 백운석 첨가에 의한 바이오매스 가스화의 영향)

  • Jo, WooJin;Jeong, SooHwa;Park, SungJin;Choi, YoungTai;Lee, DongHyun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.783-791
    • /
    • 2015
  • A fluidized-bed reactor with an inside diameter of 0.1 m and a height of 1.2 m was used to study the effect of steam and catalyst additions to air-blown biomass gasification on the production of producer gas. The equipment consisted of a fluidized bed reactor, a fuel supply system, a cyclone, a condenser, two receivers, steam generator and gas analyzer. Silica sand with a mean particle diameter of $380{\mu}m$ was used as a bed material and calcined dolomite ($356{\mu}m$), which is effective in tar reduction and producer gas purification, was used as the catalyst. Both of Korea wood pellet (KWP) and a pellet form of EFB (empty fruit bunch) which is the byproduct of Southeast Asia palm oil extraction were examined as biomass feeds. In all the experiments, the feeding rates were 50 g/min for EFB and 38 g/min for KWP, respectively at the reaction temperature of $800^{\circ}C$ and an ER (equivalence ratio) of 0.25. The mixing ratio (0~100 wt%) of catalyst was applied to the bed material. Air or an air-steam mixture was used as the injection gas. The SBR (steam to biomass ratio) was 0.3. The composition, tar content, and lower heating value of the generated producer gas were measured. The addition of calcined dolomite decreased tar content in the producer gas with maximum reduction of 67.3 wt%. The addition of calcined dolomite in the air gasification reduced lower heating value of the producer gas. However The addition of calcined dolomite in the air-steam gasification slightly increased its lower heating value.

A Study on the Thermal Solubilization Characteristics of Highly Thickened Excess Sludge in Municipal Wastewater Treatment Plant (하수처리장에서 발생하는 고농축 잉여슬러지의 열적가용화 특성에 관한 연구)

  • Kim, Eunhyuk;Park, Myoung Soo;Koo, Seulki
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.5-13
    • /
    • 2022
  • The current environmental problem is that environmental pollution is accelerating due to the generation of large amounts of waste and indiscriminate consumption of energy. Fossil fuels, a representative energy production fuel, are burned in the process of producing energy, generating a large amount of greenhouse gases and eventually causing climate change. In addition, the amount of waste generated worldwide is continuously increasing, and environmental pollution is occurring in the process of waste treatment. One of the methods for simultaneously solving these problems is the energy recovery from and reduction of organic wastes. Sewage sludge generated in sewage treatment plants has been treated in various ways since ocean disposal was completely prohibited, but the amount generated has been continuously increasing. Since the sewage sludge contains a large amount of organic materials, it is desirable to recover energy from the sewage sludge and reduce the final discharged waste through anaerobic digestion. However, most of the excess sludge is a mass of microorganisms used in sewage treatment, and in order for the excess sludge to be anaerobically digested, the cell walls of the microorganisms must be destroyed first, but it takes a lot of time to destroy the cell walls, so high rates of biogas production and waste reduction cannot be achieved only by anaerobic digestion. Therefore, the pre-treatment process of solubilizing excess sludge is required, and the thermal solubilization process is verified to be the most efficient among various solubilization methods, and high rates of biogas production and waste reduction can be achieved by anaerobic digestion after destroying cell walls the thermal solubilization process. In this study, when pretreating TS 10% thickened excess sludge through a thermal solubilization system, a study was conducted on solubilization characteristics according to retention time and operating temperature variables. The experimental variables for the retention time of the thermal solubilization system were 30 minutes, 60 minutes, 90 minutes, and 120 minutes, respectively, while the operating temperature was fixed at 160℃. The soulbilization rates calculated through TCOD and SCOD derived from the experimental results increased in the order of 12.11%, 20.52%, 28.62%, and 31.40%, respectively. And the variables according to operating temperature were 120℃, 140℃, 160℃, 180℃, and 200℃, respectively, while the operating retention time was fixed at 60 minutes. And the solubilization rates increased in the order of 7.14%, 14.52%, 20.52%, 40.72%, and 57.85%, respectively. In addition, TS, VS, T-N, T-P, NH4+-N, and VFAs were analyzed to evaluate thermal solubilization characteristics of thickened excess sludge. As a result, in order to obtain 30% or more solubilization rate through thermal solubilization of TS 10% thickened excess sludge, 120 minutes of retention time is required when the operating temperature is fixed to 160℃, and 170℃ or more of operating temperature is needed when the operating time is fixed to 60 minutes.

Development of "Miscanthus" the Promising Bioenergy Crop (유망 바이오에너지작물 "억새" 개발)

  • Moon, Youn-Ho;Koo, Bon-Cheol;Choi, Yoyng-Hwan;Ahn, Seung-Hyun;Bark, Surn-Teh;Cha, Young-Lok;An, Gi-Hong;Kim, Jung-Kon;Suh, Sae-Jung
    • Korean Journal of Weed Science
    • /
    • v.30 no.4
    • /
    • pp.330-339
    • /
    • 2010
  • In order to suggest correct direction of researches on Miscanthus spp. which are promising bioenergy crop, authors had reviewed and summarized various literature about botanical taxonomy, morphology and present condition of breeding, cultivation and utilization of miscanthus. Among the genus of Miscanthus which are known 17 species, the most important species are M. sinensis and M. sacchariflorus which origin are East Asia including Korea, and M. x giganteus which is inter-specific hybrid of tetraploid M. sacchariflorus and diploid M. sinensis. Miscanthus is superior to other energy crops in resistance to poor environments including cold, saline and damp soil, nitrogen utilization efficiency, budget of input energy and carbon which are required for producing biomass and output which are stored in biomass. The major species for production of energy and industrial products including construction material in Europe, USA and Canada is M. x giganteus which was introduced from Japan in 1930s. In present, many breeding programs are conducted to supplement demerits of present varieties and to develop "Miscanes" which is hybrid of miscanthus and sugar cane. In Korea, the researches on breeding and cultivation of miscanthus were initiated in 2007 by collecting germplasms, and developed "Goedae-Uksae 1" which is high biomass yield and "mass propagation method of miscanthus" which can improve propagation efficiency in 2009. In order to develop "Korean miscanthus industry" in future, the superior varieties available not only domestic but also foreign market should be developed by new breeding method including molecular markers. Researches on production process of cellulosic bio-ethanol including pre-treatment and saccharification of miscanthus biomass also should be strengthen.

Description and Application of a Marine Microalga Auxenochlorella protothecoides Isolated from Ulleung-do (울릉도 거북바위 조수웅덩이에서 분리된 해양 미세조류 옥세노클로렐라 프로토테코이드 균주의 기술 및 응용)

  • Jang, Hyeong Seok;Kang, Nam Seon;Kim, Kyeong Mi;Jeon, Byung Hee;Park, Joon Sang;Hong, Ji Won
    • Journal of Life Science
    • /
    • v.27 no.10
    • /
    • pp.1152-1160
    • /
    • 2017
  • A unicellular green alga was axenically isolated from a tidal pool on Ulleung-do, Korea. Morphological, molecular, and biochemical analyses revealed that the isolate belonged to Auxenochlorella protothecoides. The current study is the first record of this species in Korea. The microalgal strain was named as A. protothecoides MM0011 and its growth, lipid and pigment compositions, and biomass properties were investigated. The strain is able to thrive in a wide range of temperatures ($5{\sim}35^{\circ}C$) and to withstand up to 1.5 M NaCl. The results of GC/MS analysis showed that the isolate was rich in nutritionally important polyunsaturated fatty acids (PUFAs). Its major fatty acids were linoleic acid (27.6%) and ${\alpha}-linolenic$ acid (39.6%). Thus, this indigenous microalga has potential as an alternative source of ${\omega}3$ and ${\omega}6$ PUFAs, which currently come from fish and plant oils. Also, the HPLC analysis revealed that the value-added antioxidant, lutein, was biosynthesized as the accessory pigments by the microalga. A proximate analysis showed that the volatile matter content was 85.6% and an ultimate analysis indicated that the gross calorific value was $20.3MJ\;kg^{-1}$. Since 40.5% of total nitrogen and 27.9% of total phosphorus were removed from the medium, respectively, it also has potential as a feedstock for biofuel applications which could be coupled to wastewater treatment. In addition, the biomass may also serve as an excellent animal feed because of its high protein content (51.4%). Therefore, A. protothecoides MM0011 shows promise for application in production of microalgae-based biochemicals and as a biomass feedstock.

Optimization of Pre-treatment of Tropical Crop Oil by Sulfuric Acid and Bio-diesel Production (황산을 이용한 열대작물 오일의 전처리 반응 최적화 및 바이오디젤 생산)

  • Kim, Deog-Keun;Choi, Jong-Doo;Park, Ji-Yeon;Lee, Jin-Suk;Park, Seung-Bin;Park, Soon-Chul
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.762-767
    • /
    • 2009
  • In this study, the feasibility of using vegetable oil extracted from tropical crop seed as a biodiesel feedstock was investigated by producing biodiesel and analysing the quality parameters as a transport fuel. In order to produce biodiesel efficiently, two step reaction process(pre-treatment and transesterificaion) was required because the tropical crop oil have a high content of free fatty acids. To determine the suitable acid catalyst for the pre-esterification, three kinds of acid catalysts were tested and sulfuric acid was identified as the best catalyst. After constructing the experimental matrix based on RSM and analysing the statistical data, the optimal pre-treatment conditions were determined to be 26.7% of methanol and 0.982% of sulfuric acid. Trans-esterification experiments of the pre-esterified oil based on RSM were carried out, then discovered 1.24% of KOH catalyst and 22.76% of methanol as the optimal trans-esterification conditions. However, the quantity of KOH was higher than the previously established KOH concentration of our team. So, we carried out supplemental experiment to determine the quantity of catalyst and methanol. As a result, the optimal transesterification conditions were determined to be 0.8% of KOH and 16.13% of methanol. After trans-esterification of tropical crop oil, the produced biodiesel could meet the major quality standard specifications; 100.8% of FAME, 0.45 mgKOH/g of acid value, 0.00% of water, 0.04% of total glycerol, $4.041mm^2/s$ of kinematic viscosity(at $40^{\circ}C$).