• Title/Summary/Keyword: 바이오연료

Search Result 682, Processing Time 0.028 seconds

The Optimization of Biohydrogen Production Medium by Dark Fermentation with Enterobacter aerogenes (Enterobacter aerogenes의 혐기발효에 의한 바이오 수소 생산 배지의 최적화)

  • Kim, Kyu-Ho;Choi, Young-Jin;Kim, Eui-Yong
    • KSBB Journal
    • /
    • v.23 no.1
    • /
    • pp.54-58
    • /
    • 2008
  • Hydrogen is considered as an energy source for the future due to its environmentally friendly use in fuel cells. A promising way is the biological production of hydrogen by fermentation. In this study, the optimization of medium conditions which maximize hydrogen production from Enterobacter aerogenes KCCM 40146 were determined. As a result, the maximum attainable cumulative volume of hydrogen was 431 $m{\ell}$ under the conditions of 0.5M potassium phosphate buffer, pH 6.5 medium containing 30 g/L glucose. The best nitrogen sources were peptone and tryptone for the cell growth as well as hydrogen production. The control of cell growth rate was found to be a important experimental parameter for effective hydrogen production

A Study on Characteristics of Combustion and Thermo Pyrolysis in Co-firing with Pulverized Coal and Wood Biomass (미분탄과 목재 바이오매스 혼합 연료의 연소 및 열분해 특성에 관한 연구)

  • An, Jae-Woo;Ahn, Seong-Yool;Moon, Cheor-Eon;Sung, Yon-Mo;Seo, Sang-Il;Kim, Tae-Hyung;Choi, Gyung-Min;Kim, Duck-Jool
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.2
    • /
    • pp.34-40
    • /
    • 2010
  • The effect of co-firing with pulverized coal and wood biomass on ignition and burn-out temperature was investigated at air and oxy-fuel conditions by thermo gravimetric analyzer(TGA). Three kinds of coal(shenhua, adaro, wira) were selected and mixing ratios of coal and wood biomass was set to 1, 0.5, and 0.8. The ignition temperature depended on the amount of volatile matter of blended fuel, while the burn-out temperature was dominated by the oxidant ingredients. The oxy-fuel condition with an oxygen ratio(Ofr,o) of 0.3 showed similar tendency with air condition in the heat flow measurement. Volatile matter reaction, however, became dominant when oxygen ratio exceeded 0.8 for co-firing combustion of wood biomass and pulverized coal.

The Four Power Plants Field Demonstration Research on Combustion Characteristic of the Bio Oil for Fuel Switching (국내 4개 중유발전소 실증실험을 통한 발전연료 대체용 바이오중유의 연소특성 연구)

  • Baek, Sehyun;Kim, Hyunhee;Park, Hoyoung;Kim, Young Joo;Kim, Tae Hyung;Ko, Sung Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.1
    • /
    • pp.15-23
    • /
    • 2015
  • This paper presents the results of field demonstration for fuel switching to bio-fuel oil in 4 commercial heavy oil fired power plants. The 100% fuel switching field demonstration was successfully carried out in two tangential-firing boilers at a capacity of 75 and 100 MWe respectively without major equipment retrofit, and also 25% bio-fuel oil blending for two opposite firing boilers at a capacity of 350 and 400 MWe respectively. Despite the low density and heating value, the bio fuel was successfully replaced heavy fuel oil at the full load by only adjusting operational parameters. Incase of bio fuel oil combustion, heat absorption of radiative heat transfer section was reduced while convection section has opposite trend. In pollutants emission, a major reductionin SOx as well as 10-20% reduction in NOx were achieved by the fuels witching. On the other hand, boiler efficiency was slightly underestimated.

Effects of DME Additives on Combustion Characteristics and Nano-particle Distributions in a Single Cylinder Compression Ignition Engine (DME 연료에 첨가제를 혼합하였을 때의 연소 특성 및 배출가스 특성에 관한 연구)

  • Kwon, Seok-Joo;Cha, June-Pyo;Kang, Min-Gu;Lee, Chang-Sik;Park, Sung-Wook;Lim, Young-Kwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.19-25
    • /
    • 2012
  • This study describes effects of DME additives on combustion and exhaust emissions characteristics including nano-particle in a single cylinder compression ignition engine. Considered additives include bio-diesel, n-butanol, and MTBE for increasing kinematic viscosity. Among three additives, n-butanol showed the greatest kinematic viscosity. In addition MTBE showed the highest vapor pressure. In the present study mixing ratios of additives were kept constant at 1 and 10% by volume. Experiments were performed at 1200rpm engine speed and nano-particles were measured by SMPS (Scanning mobility particle sizer) devices. Results of combustion characteristics showed that considered additives had little effects on combustion pressure. However, patterns of heat release rate were dependent on properties of additives. Nano-particles of MTBE were the lowest among considered additives.

Torrefaction Properties of Unused Agricultural Residues As Biomass Fuel (바이오매스 연료로서 미활용 농업부산물의 반탄화 특성)

  • Yoon, Yeo Seong;Kang, ku;Park, Seong Jik;Hong, Seong Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.5
    • /
    • pp.17-23
    • /
    • 2017
  • In South Korea, 25 % of annual agricultural residues (11.64 million tons) are unused. The hydrophilicity, low lower heating value (LHV), and low energy density of agricultural residues can be obstacles for efficient usage. Torrefaction, a low temperature pyrolysis process, can be a solution to overcome these disadvantage of agricultural residues. In this study, agricultural residues such as bean stem, pepper stem, perilla stem, sorghum stem, acorn shell, and ginkgo shell are torrefied at 200, 230, and $250^{\circ}C$ and evaluated energy properties, respectively. The torrefaction can increase the LHV and energy density rate of agricultural residues from 3,331~4,444 kcal/kg to 4,166~5,830 kcal/kg and 20~30 %, respectively.

Effect of Diesel Injection Characteristics on Biogas-Diesel Dual Fuel Engine Performance (디젤 분사 특성이 Biogas-디젤 혼소엔진 성능에 미치는 영향)

  • Lee, Sun-Youp;Kim, Young-Min;Lee, Jang-Hee
    • Journal of ILASS-Korea
    • /
    • v.15 no.4
    • /
    • pp.195-201
    • /
    • 2010
  • Due to its carbon-neutral nature, biogas generated from anaerobic digestion or fermentation of biodegradable wastes is one of the important renewable energy sources to reduce global warming. It is mainly composed of methane and various inert gases such as $CO_2$ and $N_2$, and the actual composition of biogas significantly varies depending on the origin of anaerobic digestion process. Therefore, in order to effectively utilize this fuel as an energy source for electricity, it is important to develop power generation engines which can successfully apply biogas with significant composition variations. In this study, efforts have been made to develop a diesel-biogas duel fuel engine as a way to achieve such a stable power generation. The effects of diesel fuel injection quantity and pressure on stable combustion and engine performance were investigated, and an impact of diesel fuel atomization was discussed. The engine test results show that there exists a 2 stage combustion which consists of diesel pilot fuel burning and premixed biogas/air mixture burning in dual fuel engine operation and optimum diesel injection parameters were suggested for biogases with various compositions and heating values.

Estimation of Synthesis Gas Composition by Biomass Fuel Conditions using Thermodynamic Equilibrium Model (열역학적 평형모델을 이용한 바이오매스 연료조건에 따른 합성가스 조성의 예측)

  • Hong, Seong-Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.1
    • /
    • pp.79-87
    • /
    • 2015
  • A thermochemical equilibrium model was constructed for predicting composition of synthesis gas in biomass gasification. The model included estimation of equilibrium constants using Gibbs free energy. After constructing the model, the results were compared with the experimental values and predictions from a previous model. Gas compositions were reasonably well agreed with them and showed effects of operational and fuel condition. When the reaction temperature increased, the lower heating values decreased due to the decrease in CH4 concentrations. The methane concentrations were lower than those observed in experimental results. The model was used to predict the gas composition and heating values for the cases of mixed fuel of charcoal and un-dry woodchips. Although downdraft gasifiers require fuels less than 15% of moisture contents, the model results indicated that the mixed fuel with charcoal and woodchips which had over 25% of moisture contents could be used in the downdraft gasifiers. It might be explained by increase in energy density resulting from mixing charcoal. The results imply that the efforts and costs for drying biomass fuels could be reduced by mixing charcoal or fuels with higher calorific values.

BTL Pilot Process using Fe-based F-T Catalyst (철계 촉매를 이용한 BTL 파일롯 공정 연구)

  • Chae, Ho-Jeong;Jeong, Soon-Yong;Kim, Chul-Ung;Jeong, Kwang-Eun;Koh, Jae-Cheon;Kim, Tae-Wan;Park, Hyun-Joo;Lee, Sang-Bong;Han, Jeong-Sik;Jeong, Byung-Hun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.804-806
    • /
    • 2010
  • Due to the depletion of fossil fuel, high oil price and global warming issue by green house gas such as CO2, clean fuel technologies using biomass, especially BTL (biomass to liquid) technology, have been greatly attracted. This paper has examined F-T catalyst and process which are two backbones of BTL technology. In addition, this paper introduces our BTL pilot plant using Fe based catalyst which has been developed recently in Korea.

  • PDF

A Study on Injector Durability Test with Diesel and BD20 Using Common Rail (커먼레일을 이용한 디젤과 BD20 연료가 인젝터에 미치는 영향에 관한 연구)

  • JEONG, YUNHO;LIM, OCKTAECK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.5
    • /
    • pp.393-401
    • /
    • 2015
  • The characteristics of diesel and biodiesel are similar like as cetane number and auto-ignition temperature. High cetane number of diesel and BD could make possible to compression ignition. but BD showed different atomization from diesel due to component like density, viscosity and iodine value etc. Because of this, the biodiesel requires validation. This study using diesel and BD20 investigated effect to durability injector. Durability test were used common rail and bosch solenoid type 5-hole injector. Total test was 672hr but actual running time was 200hr. Spray experiments for spray characteristics were carried out using constant volume combustion chamber. Spray characteristics of diesel and BD showed different result up to durability test time. After 100hr, diesel showed spray shapes were stable but BD was not. After 200hr, difference of diesel and BD spray shapes were grow serious.

Hydrogen Production in Biological Way as Alternative Energy (생물학적인 방법을 통한 대체 에너지로서의 수소생산)

  • Jo, Younghwa;Jo, ByungHoon;Cha, Hyung Joon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.1
    • /
    • pp.57-63
    • /
    • 2011
  • Development of alternative energy is needed as the fossil is started to be exhausted. This alternative energy should be environmental friendly and renewable. Currently, the alternative energy which gets the most attraction is hydrogen. Hydrogen can be produced by a number of different processes. Among those methods, hydrogen production in biological way is considered as the most environmental friendly method. However, productivity of biological hydrogen production is not good enough to be commercialized yet. Thus, many researchers are trying to improve productivity and yield of biohydrogen production. Here, progress in the diverse developmental approaches on biological hydrogen production, is reviewed.